首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The synthesis and characterization of novel ruthenium(IV) complexes [Ru(η(3):η(3)-C(10)H(16))Cl(2)L] [L = 3-methylpyrazole (2b), 3,5-dimethylpyrazole (2c), 3-methyl-5-phenylpyrazole (2d), 2-(1H-pyrazol-5-yl)phenol (2e), 6-azauracile (3), and 1H-indazol-3-ol (4)] are reported. Complex 2e is converted to the chelated complex [Ru(η(3):η(3)-C(10)H(16))Cl(κ(2)-N,O-2-(1H-pyrazol-3-yl)phenoxy)] (5) by treatment with an excess of NaOH. All of the ligands feature N-H, O-H, or C═O as the potential hydrogen-bonding group. The structures of complexes 2a-2c, 2e, 3, and 5 in the solid state have been determined by X-ray diffraction. Complexes 2a-2c and 3, which contain the pyrazole N-H group, exhibit intra- and intermolecular hydrogen bonds with chloride ligands [N-H···Cl distances (?): intramolecular, 2.30-2.78; intermolecular, 2.59-2.77]. Complexes 2e and 3 bearing respectively O-H and C═O groups also feature N-H···O interactions [intramolecular (2e), 2.27 ?; intermolecular (3), 2.00 ?]. Chelated complex 5, lacking the O-H group, only shows an intramolecular N-H···Cl hydrogen bonding of 2.42 ?. The structure of complex 3, which turns out to be a dimer in the solid state through a double intermolecular N-H···O hydrogen bonding, has also been investigated in solution (CD(2)Cl(2)) by NMR diffusion studies. Diffusion-ordered spectroscopy experiments reveal an equilibrium between monomer and dimer species in solution whose extension depends on the temperature, concentration, and coordinating properties of the solvent. Preliminary catalytic studies show that complex 3 is highly active in the redox isomerization of the allylic alcohols in an aqueous medium under very mild reaction conditions (35 °C) and in the absence of a base.  相似文献   

2.
The conformational landscape of the structural isomers acetovanillone (apocynin, AV) and 6-hydroxy-3-methoxyacetophenone (HMAP) has been investigated in a supersonic jet using Fourier transform microwave spectroscopy. Two conformers have been detected in the jet-cooled expansion for each molecule (s-cis and s-trans in AV; s-trans and a-trans for HMAP), differing in the relative orientation of the acetyl and methoxy groups. Both molecules are stabilized by O-H···O or O-H···O=C hydroxyl intramolecular hydrogen bonds, either constraining the local conformations of the methoxy group in AV, or that of the acetyl group in HMAP. Internal rotation splittings have been observed in both conformers of each molecule, originated by the acetyl group, that yield information on the influence of the intramolecular hydrogen bonds on the methyl torsion. The similar internal rotation barriers in both molecules (6.6 and 7.4 kJ mol(-1) in AV; 7.3 and 7.0 kJ mol(-1) in HMAP) suggest that the acetyl torsion is only slightly affected by intramolecular hydrogen bonding. The absence of torsional tunnellings due to the methoxy group indicates torsional barriers above 10.2 and 8.9 kJ mol(-1) for AV conformers, 10.1 and 10.4 kJ mol(-1) for HMAP. Conformational ratios and relative free energies have been estimated from relative intensity measurements of the spectral lines. Ab initio (MP2) and density functional calculations using the recent M05-2X empirical functional have been used to aid the experimental work in describing the structures, internal rotation barriers and isomerization potentials.  相似文献   

3.
Predicting behaviour of hydrogen bonds with varying temperature, in particular-correlating donor-acceptor distances in the O-H···O hydrogen bonds with the frequencies of O-H stretching vibrations is important for understanding dynamics of biomolecules and phase transitions in crystals. A commonly used correlation suggested earlier in the literature is based on statistical analysis of different compounds [A. Novak, Structure and Bonding, 1974, 18, 177; K. Nakamoto, M. Margoshes, R. E. Rundle, J. Am. Chem. Soc., 1955, 77, 6480]. The present study is a rare example when correlations between geometry and energy parameters have been found for selected individual hydrogen bonds in the same crystalline compound at multiple temperatures. The properties of several types of O-H···O hydrogen bonds in bis(DL-serinium) oxalate dihydrate and DL-alaninium semi-oxalate monohydrate have been studied by a combination of variable-temperature single-crystal X-ray diffraction and polarized Raman spectroscopy. The changes in the hydrogen bonds geometry could be compared with the changes of the corresponding spectral modes. The correlation suggested by Novak is roughly followed, better for medium and weak, than for short hydrogen bonds. Fine details of spectral changes differ for individual bonds. The way how H-bonds are affected by cooling depends on their environment in the crystal structure. Short O-H···O hydrogen bonds in bis(DL-serinium) oxalate dihydrate expand or remain almost unchanged on cooling, whereas in DL-alaninium semi-oxalate monohydrate all strong H-bonds are compressed under these conditions. The distortion of individual hydrogen bonds on temperature variations is correlated with the anisotropy of lattice strain.  相似文献   

4.
The molecular shape of proteinogenic glutamic acid has been determined for the first time. Vaporization of the solid amino acid by laser ablation in combination with Fourier transform microwave spectroscopy made possible the detection of five different structures in a supersonic jet. These structures have been identified through their rotational and (14)N quadrupole coupling constants. All conformers show hydrogen bonds linking the amino and alpha carboxylic group through N-H···O═C (type I) or N···H-O (type II) interactions. In three of them there are additional hydrogen bonds established between the amino group and the carboxylic group in the gamma position. Entropic effects related to the side chain have been found to be significant in determining the most populated conformations.  相似文献   

5.
The (17)O NQR frequencies have been measured in cis-cyclobutane-1,2-dicarboxylic acid and the quadrupole coupling tensors have been determined at various temperatures. Two O···H oxygen positions and two O-H oxygen positions are observed, showing the presence of two different types of O-H···O hydrogen bonds in the unit cell. The quadrupole coupling constants at the O-H oxygen positions are approximately 30% lower than the lowest quadrupole coupling constants experimentally observed at the C-O-H positions in other carboxylic acids with either ordered or disordered hydrogen bonds. The O-H distances have been calculated from the (17)O-(1)H dipole-dipole interaction at the O-H oxygen positions. The obtained values are longer than the O-H distances usually found in O-H···O hydrogen bonds with comparable O···O distance, in agreement with the proposed proton exchange O-H···O ? O···H-O, which partially averages the dipole-dipole interaction. The energy difference of the two proton configurations, O-H···O and O···H-O, is calculated from the O-H distances determined by NQR. The temperature dependence of the (17)O quadrupole coupling tensors at the (17)O···H-O oxygen positions is analyzed in the model of proton exchange and the energy differences of the two proton configurations obtained by this analysis agree with the values obtained from the O-H distances. The quadrupole coupling tensors are analyzed in a model based on the Townes and Dailey model. The model shows that the population of an oxygen lone pair orbital is at this oxygen position reduced from 2 to approximately 1.3. The electron electric charge is most probably transferred to the oxygen σ and π electron orbitals. This may be associated with the structure of the cyclobutane ring, where the X-ray data show the presence of two unusually short C-C bonds.  相似文献   

6.
凌云  李晶  胡艾希  张雷 《结构化学》2009,28(4):461-466
Two novel triazolyl derivatives with biphenyl links, namely 4,4-bis(1,2,4-triazol-1-ylmethyl)biphenylene 1 and 4,4-bis(3,5-dimethyl-1,2,4-triazol-1-ylmethyl)biphenylene 2, have been synthesized and structurally characterized by single-crystal X-ray diffraction. Compounds 1·H2O·HCl and 2·2H2O·2HCl crystallize in the monoclinic system with space group C2/c and P21/c, respectively. The dihedral angles of the two phenyl rings are 30.26(6)° in 1·H2O·HCl, while co-planar (0.00(7)°) in 2·2H2O·2HCl. In 1·H2O·HCl, the N-H…O hydrogen bonds link 1 to form chain-like structures which are further connected by O-H…Cl, C-H…Cl, C-H…O and π-π supramolecular interactions. The hydrogen bonds of O-H…Cl in 2·2H2O·2HCl provide distinguishing P/M helical chains along the b axis, and these chains are further connected by N-H…O hydrogen bonds to generate a 2D structure. Compounds 1 and 2 in methanol solution show much stronger emission bands at 319 nm than biphenyl at 316 nm under excitation at 260 nm.  相似文献   

7.
The existence of O-H···O hydrogen bonds having a strength within the -80 to -210 kcal/mol range, that is, in the range of strength of covalent bonds and well beyond the so-called covalent limit (-50 kcal/mol), is reported on complexes where the O-H proton donor and O acceptor groups are located in ions of opposite sign. A complete analysis of short distance O-H···O hydrogen bonds between charged fragments was performed for cases where the OH and O groups are both located on charged molecules. It shows that these interactions (a) are nonsymmetrical for the O-H and H···O distances, (b) have a noncovalent H···O bond critical point, and (c) have a strong and energetically stable electrostatic component when the OH and O groups are located in oppositely charged molecules. These cation-anion O-H···O interactions are energetically stable, satisfy the usual topology for hydrogen bonds, HBs, and also have the same directionality found in other HBs. Therefore, they should be considered as a new class of HBs, the cation-anion hydrogen bonds.  相似文献   

8.
Although the majority of noncovalent interactions associated with hydrogen and heavy atoms in proteins and other biomolecules are classical hydrogen bonds between polar N-H or O-H moieties and O atoms or aromatic π electrons, high-resolution X-ray crystallographic models deposited in the Protein Data Bank show evidence for weaker C-H···O hydrogen bonds, including ones involving sp(3)-hybridized carbon atoms. Little evidence is available in proteins for the (even) weaker C-H···S interactions described in the crystallographic literature on small molecules. Here, we report experimental evidence and theoretical verification for the existence of nine aliphatic (sp(3)-hybridized) C-H···S 3-center-4-electron interactions in the protein Clostridium pasteurianum rubredoxin. Our evidence comes from the analysis of carbon-13 NMR chemical shifts assigned to atoms near the iron at the active site of this protein. We detected anomalous chemical shifts for these carbon-13 nuclei and explained their origin in terms of unpaired spin density from the iron atom being delocalized through interactions of the type: C-H···S-Fe, where S is the sulfur of one of the four cysteine side chains covalently bonded to the iron. These results suggest that polarized sulfur atoms in proteins can engage in multiple weak interactions with surrounding aliphatic groups. We analyze the strength and angular dependence of these interactions and conclude that they may contribute small, but significant, stabilization to the molecule.  相似文献   

9.
The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2(1)/c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H···O hydrogen bonds with O···O distance of 2.656(2) ? forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H···O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double CC bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.  相似文献   

10.
The title compounds, C16H16O5 (I) and C16H16O5·H2O (II), were structurally characterized by single-crystal X-ray diffraction. Compound I crystallizes in monoclinic space group P21/c with a = 10.5574(10), b = 8.3576(9), c = 16.5528(16) , β = 91.762(3)°, Z = 4, R = 0.0524 and wR = 0.1084. The molecules are jointed into a chain by intermolecular O-H···O and C-H···O hydrogen bonds, which form layers parallel to (001). The chains run along the [110] and [110] directions alternatively layer by layer, and are assembled into a network by intermolecular O-H···O (carboxyl) hydrogen bonds. On the other hand, the hydrate complex (II) crystallizes in the triclinic space group P1 with a = 5.1451(2), b = 10.4583(4), c = 14.8267(5) , α = 70.900(2), β = 82.478(2), γ = 81.359(2)°, Z = 2, R = 0.0393 and wR = 0.0983. The molecules are linked into infinite two-dimensional ribbons by O-H···O (carbonyl) and solvent-bridged O-H···O hydrogen bonds.  相似文献   

11.
The properties of the intermolecular hydrogen bonds in the monoclinic (Form I) and the orthorhombic (Form II) polymorphs of paracetamol, C(8)H(9)NO(2), have been studied by single crystal polarized Raman spectroscopy (40 to 3700 cm(-1)) in a wide temperature range (5 K < T < 300 K) in relation to the dynamics of methyl-groups of the two forms. A detailed analysis of the temperature dependence of the wavenumbers, bandwidths and integral intensities of the spectral bands has revealed an essential difference between the two polymorphs in the strength and ordering of OH···O and NH···O hydrogen bonds. The compression of intermolecular hydrogen bonds is interrelated with crystal packing and the dynamics of methyl-groups. On structural compression of the orthorhombic polymorph on cooling, a compromise is to be sought between the shortening of OH···O and NH···O bonds, attractive CH···O and repulsive CH···H contacts in the crystal structure. As a result of a steric conflict at temperatures below 100 K, N-H···O hydrogen bonds become significantly disordered, and an extended intramolecular transition from the conformation "staggered" with respect to the C=O bond to the one "staggered" with respect to the NH bond is observed. In most of the studied crystals this transition was only about 60% complete even at 5 K, but in some of the crystals the orientation of all the methyl-groups became staggered with respect to the NH bond at low temperatures. This complete transition was coupled to a sharp shortening of the OH···O and NH···O hydrogen bonds at <100 K, the appearance of new additional positions of the protons in these H-bonds, and a slight strengthening of the C-HO bonds formed by methyl-groups. The same conformational transition has been observed also in the monoclinic polymorph at T < 80 K. The crystal packing in Form I prevents the O-H···O hydrogen bonds from adopting the optimum geometry, and they are significantly disordered at all the temperatures, especially at ≤200 K. The packing of molecules in Form I is also not favourable to form C-H···O hydrogen bonds involving methyl-groups. One can conclude from the comparison of diffraction and spectroscopic data that the higher stability of Form I results not from a larger strength of individual OH···O and NH···O hydrogen bonds, but is a cumulative effect: all the hydrogen bonds together stabilize the structure of the monoclinic polymorph more than that of the orthorhombic polymorph.  相似文献   

12.
Recently reported rotational spectroscopic studies on small dimers and oligomers bound by weak hydrogen bonds show that the driving forces, the spatial arrangement and the dynamical features displayed are very different from those involved in stronger and conventional hydrogen bonds. The very small binding energies (similar to those of van der Waals interactions) imply that the stabilization of the dimer is often obtained by networks of weak hydrogen bonds. Even in the presence of multiple bonds the partner molecules show a high degree of internal freedom within the complex. This paper analyses several examples of molecular adducts bound by weak hydrogen bonds formed in free jet expansions and recently characterized by rotational spectroscopy. They include weakly bound complexes of weak donors with strong acceptors (C-H···O,N, S-H···O,N), strong donors (O-H, N-H) with weak acceptors such as the halogen atoms and π systems but also the elusive interactions between weak donors and weak acceptors (C-H···π and C-H···halogen). Examples are also given where rotational spectroscopy highlights that weak hydrogen bonds are extremely important in chiral recognition phenomena and as driving forces of the conformational landscape of important biomolecules.  相似文献   

13.
Alcohol complexes of 4-fluorophenylacetylene and 2-fluorophenylacetylene were investigated using IR-UV double resonance spectroscopy. Methanol forms a cyclic complex with both the fluorophenylacetylenes incorporating C-H···O and O-H···π hydrogen bonds, the structure of which is similar to that of the corresponding water complex but different from that of a phenylacetylene-methanol complex. The anti conformer of ethanol also binds in a similar fashion to both the fluorophenylacetylenes. Additionally, the gauche conformer of ethanol binds to 2-fluorophenylacetylene in a distinctly different structural motif that incorporates C-H···F and O-H···π hydrogen bonds. The OH group of trifluoroethanol interacts primarily with the π electron density of the C≡C bond. The π electron density of the C≡C bond is the principal point of interaction between the alcohols and both the fluorophenylacetylenes. The present results are indicative of the fact that fluorine substitution on the phenyl ring is sufficient to eliminate the subtle hydrogen bonding behavior of phenylacetylene.  相似文献   

14.
Statistical studies using the Cambridge Structural Database have revealed that there are several elongated phenoxide C-O bonds. They are characterized by the formation of 3-fold (or occasionally 2-fold) hydrogen bonds to the phenoxide oxygen atoms, and their mean bond length extends up to 1.320 ?, which is quite different from the theoretically predicted carbon-oxygen bond length of C(6)H(5)O(-) (1.26 ?). Elongated phenoxide C-O bonds associated with the formation of 3-fold hydrogen bonds were also observed in the X-ray structures of proton-transfer complexes (2X-O(-))(TEAH(+))s derived from 5'-X-substituted 5,5'-dimethyl-1,1':3',1'-terphenyl-2,2',2'-triols (2X-OHs, where X = NO(2), CN, COOCH(3), Cl, F, H, and CH(3)) and triethylamine (TEA). By comparing the X-ray structures, C-O bond elongation was found to be only slightly affected by an electron-withdrawing substituent at the para position (X). This along with strong bathochromic shifts of N-H(···O(-)) and O-H(···O(-)) stretching vibrations in the IR spectra indicates that the elongated C-O bonds in (2X-O(-))(TEAH(+))s essentially have single-bond character. This is further confirmed by molecular orbital calculations on a model complex, showing that the negatively charged phenoxide oxygen atom is no longer conjugated to the central benzene ring, and the NICS values of the three benzene rings are virtually identical. However, C-O bond elongation in (2X-O(-))(TEAH(+))s was considerably influenced by a change in the hydrogen-bond geometry. This also suggests that hydrogen bonds significantly affect phenoxide C-O bond elongation.  相似文献   

15.
The salt 1,1,3,3-tetramethylguanidinium bromide, [((CH(3))(2)N)(2)C═NH(2)](+)Br(-) or [tmgH]Br, was found to melt at 135(5) °C, forming what may be referred to as a moderate temperature ionic liquid. The chemistry was studied and compared with the corresponding chloride compound. We present X-ray diffraction and Raman evidence to show that also the bromide salt contains dimeric ion pair "molecules" in the crystalline state and probably also in the liquid state. The structure of [tmgH]Br determined at 120(2) K was found to be monoclinic, space group P2(1)/n, with a = 7.2072(14), b = 13.335(3), c = 9.378(2) ?, β =104.31(3)°, Z = 2, based on 11769 reflections, measured from θ = 2.71-28.00° on a small colorless needle crystal. Raman and IR spectra are presented and assigned. When heated, both the chloride and the bromide salts form vapor phases. The Raman spectra of the vapors are surprisingly alike, showing, for example, a characteristic strong band at 2229 cm(-1). This band was interpreted by some of us to show that the [tmgH]Cl gas phase should consist of monomeric ion pair "molecules" held together by a single N-H(+)···Cl(-) hydrogen bond, the stretching vibration of which should be causing the band, based on ab initio molecular orbital density functional theory type calculations. It is not likely that both the bromide and chloride should have identical spectra. As explanation, the formation of 1,1-dimethylcyanamide gas is proposed, by decomposition of [tmgH]X leaving dimethylammonium halogenide (X = Cl, Br). The Raman spectra of all gas phases were quite identical and fitted the calculated spectrum of dimethylcyanamide. It is concluded that monomeric ion pair "molecules" held together by single N-H(+)···X(-) hydrogen bonds probably do not exist in the vapor phase over the solids at about 200-230 °C.  相似文献   

16.
A photoionization detected IR study of thymine and 1-methylthymine monohydrates and of their homodimers was carried out to shed some light on the structure of the thymine clusters whose complex photodynamics has recently been the subject of great interest. Under supersonic jet conditions, thymine forms doubly H-bonded cyclic clusters with water or another base preferentially via its N1-H group and the adjacent carbonyl group. This hydrate is of no biological relevance since the N1-H group is the sugar binding site in thymidine. On the other hand, 1-methylthymine forms the donor H-bonds only via the N3-H group. Hence, properties of the N1-H and the N3-H bound clusters of thymine can be studied using thymine and 1-methylthymine molecules, respectively. No biologically relevant conformations of the dimers and hydrates of thymine, contrary to those of 1-methylthymine, are observed under supersonic jet conditions. Thymine homodimer, which extensively fragments upon UV ionization by formation of a protonated monomer, exhibits two N1-H···O═C2 hydrogen bonds. The photodynamics of hydrated thymines is found to be extremely sensitive to the hydration site: ranging from an ultrafast relaxation in less than 100 fs up to formation of a dark state with the lifetime on the microsecond time scale.  相似文献   

17.
A uranylcontaining compound [U(CO_3)_3(H_2O)_2]·2H_2O has been synthesized under hydrothermal condition and characterized by X-ray single-crystal analysis. Crystal structural analysis indicates that this compound consists of three CO_3~(2-) molecules, one U~(6+). The results reveal that the title compound presents a 3D frame work built up by O-H……O week hydrogen bonds interactions. The central uranium atom is eight-coordinated through three CO_3~(2-) molecules and two H_2O. The compound shows a coplanar hexagonal network structure, each hexagon containing a hexagonal hole with a water moleculet.  相似文献   

18.
1 INTRODUCTION In recent years, the assembly of extended supra- molecular architectures from molecular building units has yielded a new generation of materials with diverse network topologies[1~3]. A number of such frameworks have been found to exhibit fascinating physical and chemical properties. The investigation of hydrogen bonding is important for many practical applications, such as the design of antibiotics and development of new materials with programmed properties[4]. A great va…  相似文献   

19.
The environmental influence on the electronic character of two O-H...O hydrogen bonds in a beta-diketone, 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene, is studied by low-temperature synchrotron X-ray diffraction and high-level density functional theory (DFT) calculations. It is revealed that one of the hydrogen bonds is very strong, yet partial localization is found. This result is analyzed by atoms in molecules (AIM) theory and applying the source function. Model compounds, with less steric strain, reveal that the strong hydrogen bond is not merely a result of steric compression.  相似文献   

20.
Spectral tuning effects on visible chromophores by hydrogen bonds are central to the chemistry of vision and of photosynthesis. A model for large spectral tuning effects by hydrogen bond switching is provided by the 7-hydroxyquinoline x HCOOH complex, which forms two isomers, CTN1 and CTN2, both with an HCOOH[...]N hydrogen bond but with different (quinoline)C-H[...]O=C hydrogen bonds. A 180 degrees rotation of the HCOOH moiety around the O-H[...]N hydrogen bond exchanges the C-H[...]O hydrogen bonds, rotates the dipole moment of HCOOH, and leads to an approximately 850 cm(-1) shift of the electronic spectrum. Mass-selected S1<--S0 resonant two-photon ionization, UV-UV holeburning, S1-->S0 fluorescence spectra, and photoionization efficiency curves of the two 7-hydroxyquinoline x HCOOH isomers were measured in supersonic expansions. Comparison to ab initio calculations allow us to determine the H-bond connectivity and structure of the two isomers and to assign their inter- and intramolecular vibrations. The Franck-Condon factors of the intermolecular shear vibration chi in the S1<--S0 spectra indicate that the weak C-H[...]O hydrogen bond contracts markedly in the CTN1 isomer but expands in the CTN2 isomer. These changes of H-bond lengths agree with the spectral shifts. In contrast, the strong O-H[...]N hydrogen bond undergoes little change upon S1[...]S0 excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号