首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The achiral backbone of oligo-N-substituted glycines or "peptoids" lacks hydrogen-bond donors, effectively preventing formation of the regular, intrachain hydrogen bonds that stabilize peptide alpha-helical structures. Yet, when peptoids are N-substituted with alpha-chiral, aromatic side chains, oligomers with as few as five residues form stable, chiral, polyproline-like helices in either organic or aqueous solution. The adoption of chiral secondary structure in peptoid oligomers is primarily driven by the steric influence of these bulky, chiral side chains. Interestingly, peptoid helices of this class exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have taken advantage of this distinctive spectroscopic signature to investigate sequence-related factors that favor and disfavor stable formation of peptoid helices of this class, through a comparison of more than 30 different heterooligomers with mixed chiral and achiral side chains. For this family of peptoids, we observe that a composition of at least 50% alpha-chiral, aromatic residues is necessary for the formation of stable helical structure in hexameric sequences. Moreover, both CD and 1H-13C HSQC NMR studies reveal that these short peptoid helices are stabilized by the placement of an alpha-chiral, aromatic residue on the carboxy terminus. Additional stabilization can be provided by the presence of an "aromatic face" on the helix, which can be patterned by positioning aromatic residues with three-fold periodicity in the sequence. Extending heterooligomer chain length beyond 12-15 residues minimizes the impact of the placement, but not the percentage, of alpha-chiral aromatic side chains on overall helical stability. In light of these new data, we discuss implications for the design of helical, biomimetic peptoids based on this structural motif.  相似文献   

2.
Oligomeric N-substituted glycines or "peptoids" with alpha-chiral, aromatic side chains can adopt stable helices in organic or aqueous solution, despite their lack of backbone chirality and their inability to form intrachain hydrogen bonds. Helical ordering appears to be stabilized by avoidance of steric clash as well as by electrostatic repulsion between backbone carbonyls and pi clouds of aromatic rings in the side chains. Interestingly, these peptoid helices exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have utilized CD to systematically study the effects of oligomer length, concentration, and temperature on the chiral secondary structure of organosoluble peptoid homooligomers ranging from 3 to 20 (R)-N-(1-phenylethyl)glycine (Nrpe) monomers in length. We find that a striking evolution in CD spectral features occurs for Nrpe oligomers between 4 and 12 residues in length, which we attribute to a chain length-dependent population of alternate structured conformers having cis versus trans amide bonds. No significant changes are observed in CD spectra of oligomers between 13 and 20 monomers in length, suggesting a minimal chain length of about 13 residues for the formation of stable poly(Nrpe) helices. Moreover, no dependence of circular dichroism on concentration is observed for an Nrpe hexamer, providing evidence that these helices remain monomeric in solution. In light of these new data, we discuss chain length-related factors that stabilize organosoluble peptoid helices of this class, which are important for the design of helical, biomimetic peptoids sharing this structural motif.  相似文献   

3.
Peptoids, or oligomers of N-substituted glycines, are a class of foldamers that have shown extraordinary functional potential since their inception nearly two decades ago. However, the generation of well-defined peptoid secondary structures remains a difficult task. This challenge is due, in part, to the lack of a thorough understanding of peptoid sequence-structure relationships and, consequently, an incomplete understanding of the peptoid folding process. We seek to delineate sequence-structure relationships through the systematic study of noncovalent interactions in peptoids and the design of novel amide side chains capable of such interactions. Herein, we report the synthesis and detailed structural analysis of a series of (S)-N-(1-naphthylethyl)glycine (Ns1npe) peptoid homo-oligomers by X-ray crystallography, NMR spectroscopy, and circular dichroism (CD) spectroscopy. Four of these peptoids were found to adopt well-defined structures in the solid state, with dihedral angles similar to those observed in polyproline type I (PPI) peptide helices and in peptoids with α-chiral side chains. The X-ray crystal structure of a representative Ns1npe tetramer revealed an all cis-amide helix, with approximately three residues per turn, and a helical pitch of approximately 6.0 ?. 2D-NMR analysis of the length-dependent Ns1npe series showed that these peptoids have very high overall backbone amide K(cis/trans) values in acetonitrile, indicative of conformationally homogeneous structures in solution. Additionally, CD spectroscopy studies of the Ns1npe homo-oligomers in acetonitrile and methanol revealed a striking length-dependent increase in ellipticity per amide. These Ns1npe helices represent the most robust peptoid helices to be reported, and the incorporation of (S)-N-(1-naphthylethyl)glycines provides a new approach for the generation of stable helical structure in this important class of foldamers.  相似文献   

4.
Peptoids, or oligomers of N-substituted glycine, are an important class of non-native polymers whose close structural similarity to natural alpha-peptides and ease of synthesis offer significant advantages for the study of biomolecular interactions and the development of biomimetics. Peptoids that are N-substituted with alpha-chiral aromatic side chains have been shown to adopt either helical or "threaded loop" conformations, depending upon solvent and oligomer length. Elucidation of the factors that impact peptoid conformation is essential for the development of general rules for the design of peptoids with discrete and novel structures. Here, we report the first study of the effects of pentafluoroaromatic functionality on the conformational profiles of peptoids. This work was enabled by the synthesis of a new, alpha-chiral amine building block, (S)-1-(pentafluorophenyl)ethylamine (S-2), which was found to be highly compatible with peptoid synthesis (delivering (S)-N-(1-(pentafluorophenyl)ethyl)glycine oligomers). The incorporation of this fluorinated monomer unit allowed us to probe both the potential for pi-stacking interactions along the faces of peptoid helices and the role of side chain electrostatics in peptoid folding. A series of homo- and heteropeptoids derived from S-2 and non-fluorinated, alpha-chiral aromatic amide side chains were synthesized and characterized by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Enhancement of pi-stacking by quadrupolar interactions did not appear to play a significant role in stabilizing the conformations of heteropeptoids with alternating fluorinated and non-fluorinated side chains. However, incorporation of (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomers enforced helicity in peptoids that typically exhibit threaded loop conformations. Moreover, we found that the incorporation of a single (S)-N-(1-(pentafluorophenyl)ethyl)glycine monomer could be used to selectively promote looped or helical structure in this important peptoid class by tuning the electronics of nearby heteroatoms. The strategic installation of this monomer unit represents a new approach for the manipulation of canonical peptoid structure and the construction of novel peptoid architectures.  相似文献   

5.
The understanding of structure–function relationships within synthetic biomimetic systems is a fundamental challenge in chemistry. Herein we report the direct correlation between the structure of short peptoid ligands—N-substituted glycine oligomers incorporating 2,2′-bipyridine groups—varied in their monomer sequence, and the photoluminescence of RuII centers coordinated by these ligands. Based on circular dichroism and fluorescence spectroscopy we demonstrate that while helical peptoids do not affect the fluorescence of the embedded RuII chromophore, unstructured peptoids lead to its significant decay. Transmittance electron microscopy (TEM) revealed significant differences in the arrangements of metal-bound helical versus unstructured peptoids, suggesting that only the latter can have through-space interactions with the ruthenium dye leading to its quenching. High-resolution TEM enabled the remarkable direct imaging of singular ruthenium-bound peptoids and bundles, supporting our explanation for structure-depended quenching. Moreover, this correlation allowed us to fine-tune the luminescence properties of the complexes simply by modifying the sequence of their peptoid ligands. Finally, we also describe the chiral properties of these Ru–peptoids and demonstrate that remote chiral induction from the peptoids backbone to the ruthenium center is only possible when the peptoids are both chiral and helical.  相似文献   

6.
Substantial progress has been made in the synthesis and characterization of various oligomeric molecules capable of autonomous folding to well-defined, repetitive secondary structures. It is now possible to investigate sequence-structure relationships and the driving forces for folding in these systems. Here, we present detailed analysis by X-ray crystallography, NMR, and circular dichroism (CD) of the helical structures formed by N-substituted glycine (or "peptoid") oligomers with alpha-chiral, aliphatic side chains. The X-ray crystal structure of a N-(1-cyclohexylethyl)glycine pentamer, the first reported for any peptoid, shows a helix with cis-amide bonds, approximately 3 residues per turn, and a pitch of approximately 6.7 A. The backbone dihedral angles of this pentamer are similar to those of a polyproline type I peptide helix, in agreement with prior modeling predictions. This crystal structure likely represents the major solution conformers, since the CD spectra of analogous peptoid hexamers, dodecamers, and pentadecamers, composed entirely of either (S)-N-(1-cyclohexylethyl)glycine or (S)-N-(sec-butyl)glycine monomers, also have features similar to those of the polyproline type I helix. Furthermore, this crystal structure is similar to a solution NMR structure previously described for a peptoid pentamer comprised of chiral, aromatic side chains, which suggests that peptoids containing either aromatic or aliphatic alpha-chiral side chains adopt fundamentally similar helical structures in solution, despite distinct CD spectra. The elucidation of detailed structural information for peptoid helices with alpha-chiral aliphatic side chains will facilitate the mimicry of biomolecules, such as transmembrane protein domains, in a distinctly stable form.  相似文献   

7.
Stability towards protease degradation combined with modular synthesis has made peptoids of considerable interest in the fields of chemical biology, medicine, and biomaterials. Given their tertiary amide backbone, peptoids lack the capacity to hydrogen‐bond, and as such, controlling secondary structure can be challenging. The incorporation of bulky, charged, or chiral aromatic monomers can be used to control conformation but such building blocks limit applications in many areas. Through NMR and X‐ray analysis we demonstrate that non‐chiral neutral fluoroalkyl monomers can be used to influence the Kcis/trans equilibria of peptoid amide bonds in model systems. The cis‐isomer preference displayed is highly unprecedented given that neither chirality nor charge is used to control the peptoid amide conformation. The application of our fluoroalkyl monomers in the design of a series of linear peptoid oligomers that exhibit stable helical structures is also reported.  相似文献   

8.
Cyclic peptoids     
Foldamers are an intriguing family of biomimetic oligomers that exhibit a propensity to adopt stable secondary structures. N-Substituted glycine oligomers, or "peptoids", are a prototypical example of these foldamer systems and are known to form a helix resembling that of polyproline type I. Ongoing studies seek to improve the stability of peptoid folding and to discover new secondary structure motifs. Here, we report that peptoids undergo highly efficient head-to-tail macrocyclization reactions. A diverse array of peptoid sequences from pentamers to 20mers were converted to macrocyclic products within 5 min at room temperature. The introduction of the covalent constraint enhances conformational ordering, allowing for the crystallization of a cyclic peptoid hexamer and octamer. We present the first X-ray crystallographic structures of peptoid hetero-oligomers, revealing that peptoid macrocycles can form a reverse-turn conformation.  相似文献   

9.
Among the families of peptidomimetic foldamers under development as novel biomaterials and therapeutics, poly-N-substituted glycines (peptoids) with alpha-chiral side chains are of particular interest for their ability to adopt stable, helical secondary structure in organic and aqueous solution. Here, we show that a peptoid 22-mer with a biomimetic sequence of side chains and an amphipathic, helical secondary structure acts as an excellent mimic of surfactant protein C (SP-C), a small protein that plays an important role in surfactant replacement therapy for the treatment of neonatal respiratory distress syndrome. When integrated into a lipid film, the helical peptoid SP mimic captures the essential surface-active behaviors of the natural protein. This work provides an example of how an abiological oligomer that closely mimics both the hydrophobic/polar sequence patterning and the fold of a natural protein can also mimic its biophysical function.  相似文献   

10.
Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 μM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.  相似文献   

11.
Peptoids are oligomeric N-substituted glycines with potential as biologically relevant compounds. Helical peptoids provide an attractive fold for the generation of protein-protein interaction inhibitors. The generation of helical peptoid folds in organic and aqueous media has been limited to strict design rules, as peptoid-folding is mainly directed via the steric direction of alpha-chiral side-chains. Here a new methodology is presented to induce helical folds in peptoids with the aid of side chain to side chain cyclization. Cyclic peptoids were generated via solid-phase synthesis and their folding was studied. The cyclization induces significant helicity in peptoids in organic media, aids the folding in aqueous media, and requires the incorporation of only relatively few chiral aromatic side chains.  相似文献   

12.
In nature, living organisms use peptides and proteins to precisely control the nucleation and growth of inorganic minerals and sequester CO(2)via mineralization of CaCO(3). Here we report the exploitation of a novel class of sequence-specific non-natural polymers called peptoids as tunable agents that dramatically control CaCO(3) mineralization. We show that amphiphilic peptoids composed of hydrophobic and anionic monomers exhibit both a high degree of control over calcite growth morphology and an unprecedented 23-fold acceleration of growth at a peptoid concentration of only 50 nM, while acidic peptides of similar molecular weight exhibited enhancement factors of only ~2 or less. We further show that both the morphology and rate controls depend on peptoid sequence, side-chain chemistry, chain length, and concentration. These findings provide guidelines for developing sequence-specific non-natural polymers that mimic the functions of natural peptides or proteins in their ability to direct mineralization of CaCO(3), with an eye toward their application to sequestration of CO(2) through mineral trapping.  相似文献   

13.
Peptoids are positional isomers of peptides: peptoid sidechains are attached to backbone nitrogens rather than α‐carbons. Peptoids constitute a class of sequence‐specific polymers resistant to biological degradation and potentially as diverse, structurally and functionally, as proteins. While molecular simulation of proteins is commonplace, relatively few tools are available for peptoid simulation. Here, we present a first‐generation atomistic forcefield for peptoids. Our forcefield is based on the peptide forcefield CHARMM22, with key parameters tuned to match both experimental data and quantum mechanical calculations for two model peptoids (dimethylacetamide and a sarcosine dipeptoid). We used this forcefield to demonstrate that solvation of a dipeptoid substantially modifies the conformations it can access. We also simulated a crystal structure of a peptoid homotrimer, H‐(N‐2‐phenylethyl glycine)3‐OH, and we show that experimentally observed structural and dynamical features of the crystal are accurately described by our forcefield. The forcefield presented here provides a starting point for future development of peptoid‐specific simulation methods within CHARMM. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne–azide „click“ coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a „volumetric“ spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.  相似文献   

15.
The helical, amphipathic surfactant protein, SP-B, is a critical element of pulmonary surfactant and hence is an important therapeutic molecule. However, it is difficult to isolate from natural sources in high purity. We have created and studied three different, nonnatural analogs of a bioactive SP-B fragment (SP-B(1-25)), using oligo-N-substituted glycines (peptoids) with simple, repetitive sequences designed to favor the formation of amphiphilic helices. For comparison, a peptide with a similar repetitive sequence previously shown to be a good SP mimic was also studied, along with SP-B(1-25) itself. Surface pressure-area isotherms, surfactant film phase morphology, and dynamic adsorption behavior all indicate that the peptoids are promising mimics of SP-B(1-25). The extent of biomimicry appears to correlate with peptoid helicity and lipophilicity. These biostable oligomers could serve in a synthetic surfactant replacement to treat respiratory distress syndrome.  相似文献   

16.
We have developed a method for the rapid and unambiguous identification of sequences of hit compounds from one-bead-one-compound combinatorial libraries of peptide and peptoid ligands. The approach uses a cleavable linker that is hydrophilic to help reduce nonspecific binding to biological samples and allows for the attachment of a halogen tag, which greatly facilitates post-screening sequencing by tandem mass spectrometry (MS/MS). The linker is based on a tartaric acid unit, which, upon cleavage from resin, generates a C-terminal aldehyde. This aldehyde can then be derivatized with a bromine-containing amino-oxy compound that serves as an isotope tag for subsequent MS/MS analysis of y-ion fragments. We have applied this linker and method to the syntheses of a number of peptoids that vary in sequence and length and have also demonstrated single-bead sequencing of a peptoid pentamer. The linker is also shown to have very low levels of nonspecific binding to proteins.  相似文献   

17.
Peptoids, N-substituted glycine oligomers, represent an important class of peptidomimetics that can fold into three-dimensional structures in solution. Most of the folded peptoid structures, however, resemble helices, and this can limit their applications, specifically in asymmetric catalysis. In this work, for the first time, unique examples of pyrrolidine-based β-turn-like peptoids are described and characterized, both in the solid state, by single-crystal X-ray analysis, and in solution, by circular dichroism spectroscopy. Furthermore, their highly efficient and enantioselective catalytic activity for the production of γ-nitro aldehydes by asymmetric Michael reaction in water was demonstrated. The structural properties and DFT-D3 calculations of the new β-turn-like peptoids, as well as catalytic and spectroscopic studies on designed pyrrolidine-based helical peptoids, suggest that the β-turn structure plays a key role in the stereoselectivity of the catalytic reaction.  相似文献   

18.
N-Alkylglycine oligomers (peptoids) constitute a family of non-natural peptidomimetics attractive for the early drug discovery process because of their physicochemical features, easy of adaptation to combinatorial chemistry approaches and their proteolytic stability. Consequently, peptoid libraries have found application for discovering hits against a wide diversity of pharmaceutical targets, among which different examples of antibacterials are found. In the present work, research efforts addressed towards the identification of peptoids as antibacterial agents are discussed.  相似文献   

19.
The ability to calculate molecular properties such as molecular weights, isoelectric points, and extinction coefficients is vital for scientists using and/or synthesizing peptides and peptoids for research. A suite of two web utilities: Peptide Calculator and Peptoid Calculator, available free at http://www.pep-calc.com, are presented. Both tools allow the calculation of peptide/peptoid chemical formulae and molecular weight, ChemDraw structure file export and automatic assignment of mass spectral peaks to deletion sequences and metal/protecting group adducts. Peptide Calculator also provides a calculated isoelectric point, molar extinction coefficient, graphical peptide charge summary and β-strand contiguity profile (for aggregation-prone sequences), indicating potential regions of synthesis difficulty. In addition to the unique automatic spectral assignment features offered across both utilities, Peptoid Calculator represents a first-of-a-kind resource for researchers in the field of peptoid science. With a constantly expanding database of over 120 amino acids, non-natural peptide building blocks and peptoid building blocks, it is anticipated that Pep-Calc.com will act as a valuable asset to those working on the synthesis and/or application of peptides and peptoids in the biophysical and life sciences fields.  相似文献   

20.
Many cellular processes are controlled by protein-protein interactions, and selective inhibition of these interactions could lead to the development of new therapies for several diseases. In the area of cancer, overexpression of the protein, human double minute 2 (HDM2), which binds to and inactivates the protein p53, has been linked to tumor aggressiveness and drug resistance. In general, inhibition of protein-protein interactions with synthetic molecules is challenging and currently remains a largely uncharted area for drug development. One strategy to create inhibitors of protein-protein interactions is to recreate the three-dimensional arrangement of side chains that are involved in the binding of one protein to another, using a nonnatural scaffold as the attachment point for the side chains. In this study, we used oligomeric peptoids as the scaffold to begin to develop a general strategy in which we could rationally design synthetic molecules that can be optimized for inhibition of protein-protein interactions. Structural information on the HDM2-p53 complex was used to design our first class of peptoid inhibitors, and we provide here, in detail, the strategy to modify peptoids with the appropriate side chains that are effective inhibitors of HDM2-p53 binding. While we initially tried to develop rigid, helical peptoids as HDM2 binders, the best inhibitors were surprisingly peptoids that lacked any helix-promoting groups. These results indicate that starting with rigid peptoid scaffolds may not always be optimal to develop new inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号