首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
旋涡与行进表面水波相互作用的实验研究   总被引:1,自引:0,他引:1  
麻柏坤  张人杰 《实验力学》1997,12(2):285-290
采用振动板式造波器在二维水槽中生成近似单色的行进表面水波,采用夹板式涡发生器生成稳定上浮的涡对,在Froude数约为0.5的条件下,得到了水下涡对与不同波长和振幅的行进表面水波相互作用时的干扰图象,以实验方法验证了理论分析和数值计算的结果,并为进一步研究旋涡与行进表面水波的相互作用提供了一种实验研究方法  相似文献   

2.
3.
4.
The unsteady nonlinear interaction of three-dimensional vortices with a free surface is a great challenge in fluid mechanics, which has deep theoretical significance and important practical background. Applying the three-dimensional VOF method, the interactions of three-dimensional axisymmetric vortex rings with a free surface in an incompressible viscous fluid are numerically simulated. The influence of the Froude number and the surface tension are studied and the evolution of the vorticity, the trajectories of the vortex rings and the baroclinic vorticity on the surface are obtained. The results agreed well with the experiments reported in the literature. The project supported by the National Natural Science Foundation of China  相似文献   

5.
Swimming jellyfish deliver momentum to the surrounding fluid in the form of vortices. A three-dimensional computational model was adopted to investigate the characteristic flow patterns produced by jellyfish with a jet-based locomotion and the process of vortex generation. The interaction between jellyfish and the surrounding fluid may be simulated using the immersed boundary method. The vortex structures generated in the wake were elucidated in detail. The vortices were formed due to the contraction and expansion of the elastic bell. A dimensionless temporal parameter was employed to analyze the vortex formation process. During the early stage of contraction, the vortices were dominantly generated by the stroke. The ejected fluid from the inside of the bell was then entrained into the vortices, thereby decreasing the vorticity at the core and increasing the total circulation within the vortex ring. The Froude propulsion efficiency increased as the vortex formation number increased, implying that the propulsion in the way of growing the vortex structures was favorable in terms of the efficiency.  相似文献   

6.
The aerodynamic forces and flow structures of two airfoils performing “fling and subsequent translation“ and “translation and subsequent clap“ are studied by numerically solving the Navier-Stokes equations in moving overset grids. These motions are relevant to the flight of very small insects. The Reynolds number, based on the airfoil chord length c and the translation velocity U, is 17. It is shown that: (1) For two airfoils performing fling and subsequent translation, a large lift is generated both in the fling phase and in the early part of the translation phase. During the fling phase,a pair of leading edge vortices of large strength is generated; the generation of the vortex pair in a short period results in a large time rate of change of fluid impulse, which explains the large lift in this period. During the early part of the translation, the two leading edge vortices move with the airfoils;the relative movement of the vortices also results in a large time rate of change of fluid impulse, which explains the large lift in this part of motion. (In the later part of the translation, the vorticity in the vortices is diffused and convected into the wake.) The time averaged lift coefficient is approximately 2.4 times as large as that of a single airfoil performing a similar motion. (2) For two airfoils performing translation and subsequent clap, a large lift is generated in the clap phase. During the clap, a pair of trailing edge vortices of large strength are generated; again, the generation of the vortex pair in a short period (which results in a large time rate of change of fluid impulse) is responsible for the large lift in this period. The time averaged lift coefficient is approximately 1.6 times as large as that of a single airfoil performing a similar motion. (3) When the initial distance between the airfoils (in the case of clap, the final distance between the airfoils) varies from 0.1 to 0.2c, the lift on an airfoil decreases only slightly but the torque decreases greatly. When the distance is about lc, the interference effects between the two airfoils become very small.  相似文献   

7.
The flow past an interface piercing circular cylinder at the Reynolds number Re=2.7×104 and the Froude numbers Fr=0.2 and 0.8 is investigated using large-eddy simulation. A Lagrangian dynamic subgrid-scale model and a level set based sharp interface method are used for the spatially filtered turbulence closure and the air-water interface treatment, respectively. The mean interface elevation and the rms of interface fluctuations from the simulation are in excellent agreement with the available experimental data. The organized periodic vortex shedding observed in the deep flow is attenuated and replaced by small-scale vortices at the interface. The streamwise vorticity and the outward transverse velocity generated near the edge of the separated region, which enforces the separated shear layers to deviate from each other and restrains their interaction, are primarily responsible for the devitalization of the periodic vortex shedding at the interface. The lateral gradient of the difference between the vertical and transverse Reynolds normal stresses, increasing with the Froude number, is the main source of the streamwise vorticity and the outward transverse velocity at the interface.  相似文献   

8.
从实验和模拟计算两个方面,对涡旋波流场的速度矢量图和涡量进行了定量测试和综合分析,并对涡旋波流动与其特征影响参数之间的关系进行了研究。结果表明:涡旋波流动只在二维层流状态下产生,涡旋波形成后,Re数对旋涡尺寸的影响较小,涡量随Re数的增大而增大,但涡量不随时间的增加而单调增加。随着St数的减小,旋涡尺寸明显增大,涡量却随之减小。本文也对不同槽道内的涡旋波流场进行了数值模拟计算,进而确定了涡旋波流场的形成条件。  相似文献   

9.
This is the second of two papers on the interaction between a longitudinal vortex pair, produced by a delta-wing at angle of attack, and a turbulent boundary layer developing on a flat plate. In the first paper only the outer parts of the vortices entered the boundary layer whereas in this paper the vortices merge with it. In the resultant interaction, the boundary layer between the vortices is kept thin by lateral divergence and a three-dimensional separation line is formed outboard of each vortex. Turbulent, momentum-deficient fluid containing longitudinal vorticity is entrained from the boundary layer along these lines and wrapped around the vortices. As a consequence, the turbulent region of the vortices increases in size and the circulation slowly decreases. It is shown that the flow near the separation line and in the vortices is complicated, and this interaction is expected to be more difficult to calculate than the first. Detailed mean flow and turbulence measurements are reported.  相似文献   

10.
Effects of drift angle on model ship flow   总被引:1,自引:0,他引:1  
The effects of drift angle on model ship flow are investigated through towing tank tests for the Series 60 CB=0.6 cargo/container model ship. Resistance, side force, drift moment, sinkage, trim, and heel data are procured for a range of drift angles β and Froude numbers (Fr) and the model free condition. Detailed free-surface and mean velocity and pressure flow maps are procured for high and low Fr=0.316 and 0.16 and β=5° and 10° (free surface) and β=10° (mean velocity and pressure) for the model fixed condition (i.e. fixed with zero sinkage, trim, and heel). Comparison of results at high and low Fr and previous data for β=0° enables identification of important free-surface and drift effects. Geometry, conditions, data, and uncertainty analysis are documented in sufficient detail so as to be useful as a benchmark for computational fluid dynamics (CFD) validation. The resistance increases linearly with β with same slope for all Fr, whereas the increases in the side force, drift moment, sinkage, trim, and heel with β are quadratic. The wave profile is only affected near the bow, i.e. the bow wave amplitude increases/decreases on the windward/leeward sides, whereas the wave elevations are affected throughout the entire wave field. However, the wave envelope angle on both sides is nearly the same as β=0°, i.e. the near-field wave pattern rotates with the hull and remains within a similar wave envelope as β=0°. The wave amplitudes are significantly increased/decreased on the windward/leeward sides. The wake region is also asymmetric with larger wedge angle on the leeward side. The boundary layer and wake are dominated by the hull vortex system consisting of fore body keel, bilge, and wave-breaking vortices and after body bilge and counter-rotating vortices. The occurrence of a wave-breaking vortex for breaking bow waves has not been previously documented in the literature. The trends for the maximum vorticity, circulation, minimum axial velocity, and trajectories are discussed for each vortex. Received: 16 September 1999/Accepted: 8 November 2001  相似文献   

11.
The oblique interaction of a turbulent vortex ring with a clean water surface is experimentally investigated during the transition stage using Digital Particle Image Velocimetry (DPIV) and the shadowgraph technique to map the surface velocity and deformation field simultaneously. The transitional vortex-ring/free-surface interaction leads to the formation of a trifurcation pattern at the free surface. Similar to the laminar flow case, the vortex ring initially bifurcates into two symmetric and separately connected vortex loops. The turbulent break-up of those vortex loops results in the formation of longitudinal wake vortices that symmetrically connect to the surface and eventually lead to a trifurcation pattern. In the absence of large-deformation surface waves, the simultaneous DPIV and shadowgraph measurements reveal good agreement between the surface vorticity and deformation field for small- and large-scale vortical structures. The simultaneous measurement technique is not restricted to the qualitative shadowgraph visualization, but can be easily extended to quantitative methods such as grating-imaging techniques, Color Schlieren, or Color Surface Mapping (CSM) techniques.This work has been supported by the Office of Naval Research, ONR-URI grant N00014-92-J-1610.  相似文献   

12.
Classes of vortex formation from a horizontal cylinder adjacent to an undulating free-surface wave are characterized using high-image-density particle image velocimetry. Instantaneous representations of the velocity field, streamline topology and vorticity patterns yield insight into the origin of unsteady loading of the cylinder. For sufficiently deep submergence of the cylinder, the orbital nature of the wave motion results in multiple sites of vortex development, i.e., onset of vorticity concentrations, along the surface of the cylinder, followed by distinctive types of shedding from the cylinder. All of these concentrations of vorticity then exhibit orbital motion about the cylinder. Their contributions to the instantaneous values of the force coefficients are assessed by calculating moments of vorticity. It is shown that large contributions to the moments and their rate of change with time can occur for those vorticity concentrations having relatively small amplitude orbital trajectories. In a limiting case, collision with the surface of the cylinder can occur. Such vortex–cylinder interactions exhibit abrupt changes in the streamline topology during the wave cycle, including abrupt switching of the location of saddle points in the wave. The effect of nominal depth of submergence of the cylinder is characterized in terms of the time history of patterns of vorticity generated from the cylinder and the free surface. Generally speaking, generic types of vorticity concentrations are formed from the cylinder during the cycle of the wave motion for all values of submergence. The proximity of the free surface, however, can exert a remarkable influence on the initial formation, the eventual strength, and the subsequent motion of concentrations of vorticity. For sufficiently shallow submergence, large-scale vortex formation from the upper surface of the cylinder is inhibited and, in contrast, that from the lower surface of the cylinder is intensified. Moreover, decreasing the depth of submergence retards the orbital migration of previously shed concentrations of vorticity about the cylinder.  相似文献   

13.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

14.
An LDA technique and phase-averaging analysis were used to study unsteady precessing flow in a model vortex burner. Detailed measurements were made for Re=15,000 and S=1.01. On the basis of the analysis of phase-averaged data and vortex detection by the λ2-technique of Joeng and Hussain (1995), three precessing spiral vortex structures were identified: primary vortex (PV), inner secondary vortex (ISV), and outer secondary vortex (OSV). The PV is the primary and most powerful structure as it includes primary vorticity generated by the swirler; the ISV and OSV are considered here as secondary vortical structures. The jet breakdown zone is the conjunction of a pair of co-rotating co-winding spiral vortices, PV and ISV. The interesting new feature described is that the secondary vortices form a three-dimensional vortex dipole with a helical geometry. The effect of coupling of secondary vortices was suggested as a mechanism of enhanced stability reflected in their increased axial extent.  相似文献   

15.
Ruimin Sun 《力学快报》2011,1(3):032001
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel. The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance, respectively. The evolution of the flow structures and aerodynamics with a ground height were analyzed. The vorticity of tip vortices was found to reduce with the decreasing of the ground height, and the position of vortex-core moved gradually to the outboard of the wing tip. Therefore, the down-wash flow induced by the tip vortices was weakened. However, vortex breakdown occurred as the wing lowered to the ground. From the experimental results of aerodynamics, the maximum lift-to-drag ratio was observed when the angle of attack was 2.5° and the ground clearance was 0.2.  相似文献   

16.
The mechanisms of sound generation and the kind of interaction of vortices with airfoils in an airflow are investigated. Experiments have been performed in stationary flow with vortices of a Kármán vortex street and in a shock tube flow with a starting vortex of a lifting airfoil. Depending on the dimensions of vortices and airfoils, their distance, and the flow Mach numbers, different kinds and amplitudes of upstream propagating steep sound waves occur.  相似文献   

17.
Here we discuss the types of waves which can be supported on compact regions of vorticity. This is a subject first studied by Lord Kelvin for waves propagating along the vortex lines of the Rankine and hollow-core vorticity distributions. Kelvin's major interest was in the stability of vortex rings and the numerous resurgencies in interest have usually been driven by practically important phenomena, e.g., the observations of vortex breakdown and waves on tornado and aircraft vortices in the early 1960's and more recently in technologically and geophysically significant flows and on the quantised vortices of super fluid HeII.

The major wave-types of interest are of varicose, helicoidal and fluted form and represent a periodic swelling and contraction, a bending and a “krinkling” of the core, respectively. The first two propagate along and the third around the vortex lines. All have been studied theoretically, experimentally and numerically in the limit of small wave amplitude and their major characteristics are now clear. Of particular interest is the extension of these results to the non-linear regime in which case the two first types are known to exhibit solitary wave or soliton characteristics in certain parameter ranges. It is these non-linear waves which often dominate observations of vortex flows both in nature and in technological applications and which have caused much controversy in the interpretation of results found under complex circumstances of flow and apparatus geometry.  相似文献   


18.
Motion of a cylinder adjacent to a free-surface: flow patterns and loading   总被引:1,自引:0,他引:1  
The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence. Received: 18 May 1998/Accepted: 18 August 1999  相似文献   

19.
It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters throughout the flow, causing fewer vortices to be generated under the control. However, when the structural spacing is sufficiently large, the generation of new vortex is not suppressed over the no-control surface in the near-wall region, resulting in an increase of the second- and fourth-quadrant Reynolds shear stresses. Although strong actuating velocity intensifies the near-wall turbulence, the increase in the turbulence activity is attributed to the generation of counter-clockwise near-wall vortices by the increased vortex transport.  相似文献   

20.
The experimental results of studying the effect of homogeneous stratification of the fluid on the conditions of generation of a Kárman vortex street [1] developing in the wake of a cylinder in steady horizontal motion are described. In a homogeneous medium at Reynolds numbers Re >5 two symmetrical regions of vorticity of opposite sign are formed behind the cylinder and move together with the latter. As the speed of the cylinder increases, the link between the vortices and the cylinder grows weaker, the vortices are stretched out along the flow and at Re > 40 begin to separate alternately, forming a vortex street in the wake. At first, the frequency of vortex separation increases sharply with increase in Re, but then levels off. It is found that in a uniformly stratified fluid the onset of vortex separation from the moving cylinder is delayed. The dependence of the critical Reynolds number (onset of vortex separation) on the internal Froude number is obtained. The effect of stratification of the fluid on the frequency of separation of the vortices in the Kármán street is investigated. The effect of the Froude number on the dependence of the Strouhal number on the Reynolds number is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 83–86, January–February, 1986.In conclusion the authors wish to thank A. T. Onufriev for his interest in their work and useful discussions of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号