首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temperature programmed desorption, high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) were used to investigate the adsorption and reaction of ethylene oxide (EO) on the Ag(111) surface. When EO is dosed onto Ag(111) at 140 K it adsorbs molecularly, desorbing without reaction at approximately 200 K. On the other hand, when EO is dosed at 250 K, the ring-opening of EO is activated, and a stable surface intermediate is formed. This intermediate reacts at 300 K to re-form EO plus a few other products. HREELS and DFT studies suggest that this stable intermediate is a surface oxametallacycle. Moreover, the activation energies observed for the reaction of the oxametallacycle to form EO are in an excellent agreement with the values reported for the steady-state ethylene epoxidation process. This work represents the first demonstration of surface oxametallacycle ring-closure to form EO. Comparison of the spectroscopic results obtained from silver single crystals and supported catalysts strongly suggests that oxametallacycles are important intermediates in silver-catalyzed ethylene epoxidation.  相似文献   

2.
采用密度泛函理论(DFT)对苯乙烯在Ag(110)表面和Ag(111)表面的环氧化反应进行了计算研究. 经计算, 在Ag(110)表面预吸附氧原子更易吸附在3 重穴位(3h), 吸附能为-3.59 eV; 在Ag(111)表面预吸附氧原子的最稳定吸附位是fcc 位, 吸附能为-3.69 eV. 苯乙烯的环氧化反应过程首先经过一个金属中间体, 然后再进一步反应变为产物, 其中经过直链中间体较支链中间体更加有利. Ag(110)面的反应活化能一般大于Ag(111)面的, 并且微观动力学模拟结果表明, Ag(111)表面生成环氧苯乙烷的选择性要明显高于Ag(110)表面(0.38 与 0.003), 原因是Ag(111)面环氧化反应活化能小于苯乙醛及燃烧中间体的活化能, 而在Ag(110)上正相反.  相似文献   

3.
The partial oxidation of olefins on Ag surfaces has been a long standing problem in surface science and is of great commercial interest. We present a temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS) study of the partial oxidation of styrene on Ag(111). The reaction products are CO2, water, styrene oxide, benzene, and benzoic acid. XPS gives evidence for two different reaction intermediates that we assign to an oxametallacycle and to benzoate. The oxametallacycle seems to be the precursor for both the formation of styrene oxide and the formation of benzoate, and thus, in addition to leading to styrene oxide, also leads to undesired byproducts. The benzoate reacts further to form CO2, benzene, and benzoic acid.  相似文献   

4.
Competitive ethene oxidation pathways are presented for a p(4 x 4) surface-oxide phase on Ag(111) obtained from density functional theory (DFT) calculations. Both parallel routes are found to proceed from a common oxametallacycle intermediate (OMME) in agreement with previous mechanistic studies on low coverage O adatom phase, although acetaldehyde (AcH) is favored by almost 2 kcal/mol. An even more striking difference with pure metal surface appears with the oxide regeneration pathways, which are found non-rate controlling. Furthermore, a kinetic model is developed on the basis of these DFT calculations and yields 96% selectivity in favor of AcH for a simulation in realistic catalytic conditions (600 K and respective partial pressures of 1 atm for ethene and oxygen reactants). As a key finding, this low ethene epoxide selectivity is proposed to be directly linked to the conformational barrier of the pivotal intermediate. In fact, the elasticity of the ultrathin oxide adlayer enables a twisted OMME structure as a true minimum, which agrees well with orbital prerequisite of the concerted H migration toward AcH. On the contrary, the desired selective ring closure forming ethene epoxide (EO) requires conformational inversion although the eclipsed form lies 2 kcal/mol above.  相似文献   

5.
We demonstrate that intermolecular interactions, controlled by both oxygen and styrene coverage, alter reaction selectivity for styrene oxidation on oxygen‐covered Au(111). Several partial oxidation products are formed—styrene oxide, acetophenone, benzoic acid, benzeneacetic acid, and phenylketene—in competition with combustion. The maximum ratio of the yields of styrene oxide to the total CO2 produced is obtained for the maximum styrene coverage for the first two layers (0.28 ML) adsorbed on Au(111) precovered with 0.2 ML of O. Furthermore, our reactivity and infrared studies support a mechanism whereby styrene oxidation proceeds via two oxametallacycle intermediates which, under oxygen‐lean conditions, lead to the formation of styrene oxide, acetophenone, and phenylketene. Benzoate, identified on the basis of infrared reflection absorption spectroscopy, is converted into benzoic acid during temperature‐programmed reaction. These results demonstrate the ability to tune the epoxidation selectivity using reactant coverages and provide important mechanistic insight into styrene oxidation reactions.  相似文献   

6.
The reaction mechanism for the styrene selective oxidation on the oxygen preadsorbed Au(111) surface has been studied by the density functional theory calculation with the periodic slab model. The calculated results showed that the process of reaction includes two steps: forming the oxametallacycle intermediate (OMME) and then producing the products. It was found that the second step, from OMME to product is the rate-controlling step, which is similar to ethylene selective oxidation on Ag. Importantly, the present density-functional-theory calculation results suggested that the mechanism via the OMME (2) (i.e. the preadsorbed atomic oxygen bound to the CH2 group involved in C6H5--CH=CH2) to produce styrene epoxide is kinetically favored than that of OMME (1).  相似文献   

7.
Reaction mechanisms and activation energies for the complete conversion of ethene to ethene epoxide on two recently characterized oxidized Ag{111} surfaces have been determined from density functional theory. On both surfaces, epoxidation proceeds through a two-step nonconcerted mechanism via an oxametallacycle intermediate. The key implications are that both surfaces are active and that epoxidation can take place over a wide O coverage regime.  相似文献   

8.
Montmorillonite K 10 efficiently catalyses the opening of epoxide rings by amines in high yields with excellent regio- and diastereo-selectivities under solvent-free conditions at room temperature affording an improved process for synthesis of 2-amino alcohols. Reaction of cyclohexene oxide with aryl/alkyl amines leads to the formation of trans-2-aryl/alkylaminocyclohexanols. For unsymmetrical epoxides, the regioselectivity is controlled by the electronic and steric factors associated with the epoxide and the amine. Selective nucleophilic attack at the benzylic carbon of styrene oxide takes place with aromatic amines, whereas, aliphatic amines exhibit preferential nucleophilic attack at the terminal carbon. Aniline reacts selectively at the less hindered carbon of other unsymmetrical epoxides. The difference in the internal strain energy of the epoxide ring in cycloalkene oxides and alkene oxides led to selective nucleophilic opening of cyclohexene oxide by aniline in the presence of styrene oxide. Due to the chelation effect, selective activation of the epoxide ring in 3-phenoxy propylene oxide takes place in the presence of styrene oxide leading to preferential cleavage of the epoxide ring in 3-phenoxy propylene oxide by aniline.  相似文献   

9.
High-resolution scanning tunneling microscopy (STM) images at 5 K, simultaneously resolving the molecular adsorbate and the honeycomb structure of the well-defined Ag[111]-p(4 x 4)+Ag(1.83)O substrate, assign the adsorption site for ethene on the silver oxide surface. Ethene molecules are exclusively adsorbed above a particular subset of Ag(delta)(+) sites in the hexagonal rings of the oxide. Extensive density functional theory (DFT) slab calculations confirm that this is the most stable site, with an adsorption energy of 0.4 eV (39 kJ mol(-1)). Adsorption is accompanied by a large deformation of the hexagonal oxide ring and a significant increase in the C-C bond length. STM image simulations provide qualitative agreement with the experimental images, and the molecular orientation is discussed with the help of simple molecular orbital arguments.  相似文献   

10.

Multiphase block copolymers having the structure of poly(?‐caprolacton‐b‐etyhlene glycol‐b‐styrene‐b‐ethylene glycol‐b‐?‐caprolacton) were synthesized from poly(ethylene oxide) possesing azo group in the main chain by the combination of free radical polymerization (FRP) of styrene (S) and ring opening polymerization (ROP) of ?‐caprolacton (?‐CL) in one‐step. The block copolymers were characterized 1H‐NMR and FT‐IR spectroscopy and gel permeation chromatography (GPC). 1H‐NMR and FT‐IR spectroscopy and GPC studies of the obtained polymers indicate that multiphase block copolymers easily formed as a result of combination FRP and ROP in one‐step.  相似文献   

11.
TAMOF-1 , a homochiral metal-organic framework (MOF) constructed from an amino acid derivative and Cu(II), was investigated as a heterogeneous catalyst in kinetic resolutions involving the ring opening of styrene oxide with a set of anilines. The branched products generated from the ring opening of styrene oxide with anilines and the unreacted epoxide were obtained with moderately high enantiomeric excesses. The linear product arising from the attack on the non-benzylic position of styrene oxide underwent a second kinetic resolution by reacting with the epoxide, resulting in an amplification of its final enantiomeric excess and a concomitant formation of an array of isomeric aminodiols. Computational studies confirmed the experimental results, providing a deep understanding of the whole process involving the two successive kinetic resolutions. Furthermore, TAMOF-1 activity was conserved after several catalytic cycles. The ring opening of a meso-epoxide with aniline catalyzed by TAMOF-1 was also studied and moderate enantioselectivities were obtained.  相似文献   

12.
The reaction mechanism for the styrene selective oxidation on the oxygen preadsorbed Cu(111) surface has been studied by the density functional theory calculation with the periodic slab model. The calculated result indicated that the process includes two steps: forming the oxametallacycle intermediate (OMMS) and then producing the products. In addition, it was found that the second step, from OMMS to the product, is the rate‐controlling step, which is similar to the previous work of ethylene selective oxidation. The present result indicated that the selectivity towards the formation of styrene epoxide on Cu(111) is much higher than that on Au(111). More importantly, we found that the mechanism via the OMMS (2) (i.e., the preadsorbed atomic oxygen bound to the CH2 group involved in C6H5? CH?CH2) to produce styrene epoxide is kinetically favored than that of OMMS (1). We also found that the selectivity toward the styrene epoxide formation on Cu2O is similar to that of Cu(111). © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
Controlling selectivity in heterogeneous catalysis is critical for the design of environmentally friendly catalytic processes that minimize the production of undesired byproducts and operate with high energy efficiency. We show that the Ag nanowire catalysts exhibit higher selectivity in the ethylene epoxidation reaction than conventional spherical particle catalysts. The higher selectivity of the nanowire catalysts was attributed to a higher concentration of the Ag(100) surface facets in the nanowire catalysts compared to the particle catalysts. Density functional theory calculations show that the transformation of the surface oxametallacycle intermediate to form the selective product, EO, is more favorable on the Ag(100) than on Ag(111). The studies show that recent advances in the controlled synthesis of uniform nanostructures with well-defined surface facets might provide an important platform for the design of highly selective heterogeneous catalysts.  相似文献   

14.
A vibronic analysis of the fluorescence spectrum of styrene in crystalline solution at 77 K corroborates the assignment of the O.O band at 34758 cm?1 for gas-phase spectra. The torsional frequency of the vinyl group with respect to the phenyl ring is used to evaluate the internal rotation barrier of styrene (5.7 kcal mol?1). Configuration interaction MO calculations including all the mono and di-excilations within the π-electron system of styrene suggest that the first π—π* transition has a moment tilted by 10° with respect to the long axis of the molecule; this is in agreement with the rotational structure of the gas-phase band at 34758 cm?1, the analysis of which results in an A-type band.  相似文献   

15.
采用密度泛函理论和周期性平板模型对氯乙烯在预吸附氧原子的Ag(100)面上选择性环氧化反应进行了模拟计算.结果表明,该反应首先由反应物生成中间体,再由中间体生成产物.由于氯乙烯是一种不对称的分子,所以该反应存在两种可能的途径.比较反应活化能可以发现,在一个反应通道中环氧氯乙烷要比氯乙醛的生成更容易;而在另一反应通道中,...  相似文献   

16.
For the first time, we demonstrate olefin epoxidation promoted by an extended Au surface. The oxidation of styrene to styrene epoxide, benzoic acid, and benzeneacetic acid is promoted on Au(111) covered with 0.2 ML of oxygen atoms. The estimated selectivity for styrene epoxide formation is approximately 53%. Total combustion to CO2 accounts for approximately 20% of the styrene reaction. We propose that styrene epoxide, benzoic acid, and benzeneacetic acid are produced via two possible oxametallacycle intermediates. Our work demonstrates that extended Au is an effective material for olefin oxidation, which has implications for understanding the activity of nanoscale Au catalysts.  相似文献   

17.
考察了Ag(111)表面和吸氯的Ag(111)表面上氧的吸附行为.结果表明在Ag(111)及低暴露量氯吸附的Ag(111)上氧吸附时,表面上均存在弱的分子氧和原子氧物种.但在高暴露量氯吸附的Ag(111)表面上氧吸附时则选择性地只产生表面分子氧物种,这种选择性只与氯的吸附程度有关,而与氯的存在与否无关.结合以前的实验结果,对氯吸附至(c)阶段时的Ag(111)表面上氧的选择性吸附行为的本质作了详细讨论.  相似文献   

18.
Nanocomposites of sodium smectite with polyether‐ and polystyrene‐containing pendant cyclic carbonates offer a novel approach to improving hydraulic barrier properties of Na‐smectite liners to saline leachates. The cyclic carbonate polyethers were prepared by cationic ring opening polymerization of a cyclic carbonate‐containing epoxide, whilst polystyrene polymers having pendant cyclic carbonate groups were obtained from radical photopolymerization of styrene. Na‐smectite nanocomposites of these polymers were formed via clay in situ polymerization and solution intercalation methods. X‐ray diffraction (XRD) and FT‐IR analysis confirmed that the polyether can be intercalated within the layers of smectite via in situ as well as solution intercalation of the pre‐formed polymer. The cyclic carbonate polyether nanocomposite was more resistant to leaching in 3M aqueous sodium chloride than its respective cyclic carbonate. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2421–2429  相似文献   

19.
An iron‐based metal–organic framework, [Fe(BTC)] (BTC: 1,3,5‐benzenetricarboxylate) is an efficient catalyst in the ring opening of styrene oxide with alcohols and aniline under mild reaction conditions. Out of the various alcohols tested for ring opening of styrene oxide, methanol was found to be the most reactive in terms of percentage conversion and reactivity. The rate of the ring‐opening reaction of styrene oxide decreases as the size of the alcohol is increased, suggesting the location of active sites in micropores. [Fe(BTC)] was a truly heterogeneous catalyst and could be reused without loss of activity. The analogous compound [Cu3(BTC)2] was also found to be effective, although with somewhat lower activity than [Fe(BTC)]. The present heterogeneous protocol is compared with a homogeneous catalyst to give an insight into the reaction mechanism.  相似文献   

20.
Ag nanowires within the channels of mesoporous silica have been successfully synthesized via a double solvent technique, in which n-hexane is used as a hydrophobic solvent to disperse mesoporous silica and an AgNO(3) aqueous solution is used as a hydrophilic solvent to fill mesochannels. The morphology of the obtained Ag (nanowires, nanoparticles or nanorods) can be controlled by adjusting the concentration of AgNO(3) solution and the template pore size. HRTEM images demonstrate extensive Ag nanowires with several to tens of hundreds nanometers in length are deposited along the long axis of mesochannels when the atomic AgNO(3)/Si ratio is 0.090. When the atomic AgNO(3)/Si ratio is 0.068 or 0.11, there is a combination of Ag nanoparticles and nanowires; nanoparticles are mainly formed when the atomic AgNO(3)/Si ratio is higher than 0.14. Further, the catalytic results of the oxidation of styrene show that styrene oxide and benzaldehyde are the main products of the reaction, and the morphology and diversity of Ag in Ag/mesoporous silica composites have an effect on the conversion of styrene and selectivity of styrene oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号