首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Semi-empirical (AM1-SCI) calculations have been performed on 2-(2′-hydroxyphenyl)oxazole (HPO), 2-(2′-hydroxyphenyl)imidazole (HPI) and 2-(2′-hydroxyphenyl)thiazole (HPT) to rationalise the photophysical behaviour of the compounds exhibiting intramolecular rotation as well as excited state intramolecular proton transfer (ESIPT). The calculations reveal that there is a gradual variation in the properties from HPO to HPT through HPI so far as the existence of the rotational isomers in the ground state is concerned. While HPO gives rise to two stable rotamers (I and II) in all the common solvents, there is only one stable species for HPT in the S0 state. For HPI, rotamer II is possible only in the isolated state and/or in solvents of low polarity, but in high polar solvents it gives rise to the normal form (I) only. For all the molecules in the series, however, intramolecular proton transfer (IPT) takes place in the lowest excited singlet (S1) and the triplet (T1) states. Combination of the rotamerism and ESIPT gives rise to multiple fluorescence bands for the fluorophores. Theoretical assignments have been made for the excitation, fluorescence and phosphorescence bands. Simulated potential energy curves (PEC) in different electronic states reveal that the IPT process is feasible in either of the S1 and T1 states but not in the ground state. The ESIPT reaction has been found to be favoured both thermodynamically and kinetically in these electronic states compared to the ground state. However, quantum mechanical tunnelling has been proposed for the prototropic reaction to proceed in the excited states.  相似文献   

2.
The molecular and crystal structure of 2-(2′-hydroxyphenyl)imidazole (2) and 1-methyl-2-(2′-hydroxyphenyl)imidazole (5) have been determined by X-ray analysis. Compound (2) presents a strong intramolecular hydrogen bond (IMHB) responsible for the planarity of the molecule. In both compounds the molecules form chains through N---H…O (compound 2) and O---H…N hydrogen bonds (compound 5) but giving rise to the same packing mode. Ab initio calculations (6–31G**) have been carried out on both compounds in order to study the effect of the IMHB on the structure.  相似文献   

3.
The room temperature photophysical properties of several sulphonated and unsulphonated 6-(2′-hydroxy-4′-methoxyphenyl)-s-triazines were investigated in a range of solvents by means of steady state and picosecond fluorescence spectroscopy. Compounds possessing phenyl or p-tolyl groups in the s-triazinyl ring exhibit only a very weak normal Stokes-shifted fluorescence, arising from the initially excited chromophore. Substitution of phenoxy groups into the s-triazinyl ring results in the appearance of an additional longer-wavelength fluorescence which is assigned to the keto tautomer, formed following excited state intramolecular proton transfer (ESIPT). The rate constant for the (ESIPT) process that occurs in sodium 3-(3′,5′-diphenoxy-2′,4′,6′-triazinyl)-4-hydroxy-2-methoxybenzene sulphonate in water is estimated to be greater than 1011 s−1.  相似文献   

4.
The skeletal motions contributing to the reaction path of the ultrafast excited state intramolecular proton transfer (ESIPT) are determined directly from time resolved measurements. We investigate the ESIPT in the compounds 2-(2′-hydroxyphenyl)benzothiazole, 2-(2′-hydroxyphenyl)benzoxazole and ortho-hydroxybenzaldehyde by UV–visible pump-probe spectroscopy with 30 fs resolution. The proton transfer is observed in real time and a characteristic ‘ringing’ of the molecule in a small number of vibrational modes is found after the reaction. The results show that a bending motion of the molecular skeleton reduces the proton donor–acceptor distance and an electronic configuration change occurs at a sufficient contraction leading to the bonds of the product conformer. The process evolves as a ballistic wavepacket propagation on an adiabatic potential energy surface. The proton is shifted by the skeletal motions from the donor to the acceptor site and tunneling has not to be considered.  相似文献   

5.
Depending on the polarity and protic abilities of the solvent, 2-(2′-pyridyl)pyrrole can exist in either syn or anti rotameric forms. In nonpolar solvents, intramolecular excited state single proton transfer is observed, manifested by the appearance of low-energy tautomeric emission. The solvent-assisted excited state double proton transfer reaction is also detected. DFT calculations confirm low barriers for both single and double proton transfer processes in the lowest excited singlet state and show different character of the tautomerization in both cases: in the intramolecular reaction, mutual approach of two nitrogen atoms plays an important role.  相似文献   

6.
The intramolecular proton-transfer process, rotational process, and optical properties of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD) and its O/"NH"- and O/"S"-substituted derivatives, 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-triazole (HOT) and 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-thiadiazole (HOTD), respectively, have been studied. DFT (B3LYP/6-31+G**) single-point energy calculations were performed using HF- and DFT-optimized geometries in the ground state (S0). TD-B3LYP/6-31+G** calculations using CIS-optimized geometries were carried out to investigate the properties of the first singlet excited state (S1) and first triplet excited state (T1). The computational results revealed that a high-energy barrier inhibits the proton transfer from cis-enol (Ec) to keto (K) form in S0, whereas the proton transfer in S1 can take place through a very-low-energy barrier. The rotation between Ec and trans-enol (Et) can occur in S0 through a low-energy barrier, whereas it is prohibited because of the high-energy barrier in S1 for each of the three molecules. The vertical excitation energies were calculated using the TD-B3LYP/6-31+G** method based on the HF- and CIS-optimized geometries. Absorption and fluorescence wavelengths of HOT show a hypsochromic shift (6-15 nm) relative to HOXD, while those of HOTD show a bathochromic shift (21-29 nm). The phosphorescence wavelength of HOTD shows a significant bathochromic shift relative to that of HOXD.  相似文献   

7.
Emission properties and the photophysics of three ladder oligo(p-aniline)s; namely 5,11-diethyl-6,12-dimethylindolo[3,2-b]carbazole (DIMER 2P), 14-ethyl-5,8-dihydro-diindolo[3,2-b:2′,3′-h]carbazole (TRIMER 2P), and 5,8,14-triethyl-diindolo[3,2-b:2′,3′-h]carbazole (TRIMER 3P) are presented. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. The excitation to the S1 state does not cause important changes in the geometrical parameters of the compounds, as is experimentally corroborated by the small Stokes shifts. Emission energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1 optimized geometries and have been correlated with the corresponding fluorescence spectra of the derivatives dissolved in dichloromethane. A good agreement has been found between TDDFT emission energies and the (0,0) fluorescence bands. As predicted from theoretical calculations, all compounds exhibit small Stokes shift, which testify the rigidity of these ladder compounds. Moreover, this theoretical approach provides a good evaluation of the bathochromic shifts caused by the increase in the conjugation length or by the presence of alkyl chains on the nitrogen atoms. Finally, the fluorescence quantum yield and lifetime of the compounds in dichloromethane have been obtained. From these data, the radiative and nonradiative rate constants of the deactivation of the S1 state have been determined.  相似文献   

8.
Three isomeric 7-(pyridyl)indoles reveal very different, solvent-dependent photophysical properties. Due to rapid excited state depopulation involving intramolecular hydrogen bonding, 7-(2′-pyridyl)indole is practically nonfluorescent at room temperature. In nonpolar and polar aprotic solvents, 7-(3′-pyridyl)indole and 7-(4′-pyridyl)indole fluorescence strongly, but the emission is quenched in alcohols. Syn and anti rotameric forms of 7-(3′-pyridyl)indole are detected, each quenched to a different degree. This differential quenching is interpreted as evidence of enhanced S1 → S0 internal conversion being more efficient in cyclic solvates, with alcohol molecules forming a bridge between the proton donor and acceptor groups of an excited chromophore.  相似文献   

9.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

10.
Three pyochelin analogues and their methyl esters all containing a thiazole ring have been synthesised from the same Weinreb amide key intermediate. One of these analogues called HPTT-COOH, a molecule released in the course of pyochelin and yersiniabactin biosynthesis, was efficiently synthesised using a new base induced conversion of the key compound 2′-(2-hydroxyphenyl)-2′-thiazoline-4′-(N-methoxy,N-methyl) carboxamide into 2′-(2-hydroxyphenyl)-2′-thiazole-4′-(N-methoxy,N-methyl) carboxamide.  相似文献   

11.
We present a comparative golden rule analysis of the dynamics of the intramolecur (IM) hydrogen atom and proton transfer in the photochemical cycles of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and 5,8-dimehtyl-1-tetralone (DMT). Two major effects are taken into consideration: the promoting effect of the IM vibrations which are symmetrically coupled to the reaction coordinate,and the suppressing effect resulting from the reorganization of both the molecule and solvent.

Semiempirical quantum-chemical calculations at the AM1 level were carried out to study the energy levels of all states involved in the photochemical cycles, including the effects of solvation in a polar protic solvent in the case of DMT. Two rotamers EI and EII for the enol form of DMT were located corresponding to different positions of the H atom in the hydroxyl group. In the group state the first is more stable both in the gas phase and in polar protic solvents such as diethyl ether—isopentane—ethanol (5:2:5 by volume). Therefore the reketonization reaction is treated as one-step tunneling from the rotamer EI to the keto form, i.e. without the activated rotational equilibrium EI↔EII proposed by Grellmann and coworkers in an earlier study. The steep slope of the kinetic curve of this reaction is attributed to the additional activation energy resulting from the final reorganization of the low frequency oscillators, both intramolecular and solvent. For the dynamic calculations, the standard AM1 output (structural and force field data) was used as the input, and good agreement with the available kinetic experiments was reached for both compounds. No special reasons were found for the similarity of the kinetic curves for triplet excited-state intramolecular proton transfer in HBO and DMT.  相似文献   


12.
The photophysical properties, which vary as R is varied, of a series of [Pt(N2O2)] complexes bearing bis(phenoxy)bipyridine auxiliaries with different substituents R=H (Pt-H) (1), 4,4′-2NH2 (Pt-NH2) (2), 4,4′-2tBu (Pt-tBu) (3), 4,4′-2CN (Pt-CN) (4), and 4,4′-2NO2 (Pt-NO2) (5) are investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The solvent effects are discussed in CH2Cl2, CH3CN and CH3OH solutions, respectively, by polarizable continuum model (PCM). It is anticipated that compared with σ-donor substituents, π-acceptors have more dramatic effects on the electronic and optical properties in this series of complexes. Introduction of π-electron withdrawing substituents on bipyridine ligand will benefit the LLCT (or MLCT) and prohibit the non-radiative pathways via d–d transitions by increasing the energy gap between the HOMO–LUMO and d–d transitions. The results also reveal that the lowest-energy excitations of all complexes show blue-shifts in the polarized solution and when the polarity of the solvent increases from CH2Cl2, CH3CN and CH3OH, the low-energy broad absorption band exhibit blue-shifts. The lowest-energy excitations and photoluminescence of all complexes are dominated by π(phenoxy)→π*(bpy/NO2) (LLCT) excited state mixed with some energetically dπ (Pt)→π*(bpy/NO2) (MLCT) transition.  相似文献   

13.
The diffuse bands near 6100 Å in the laser-induced fluorescence spectrum of Cs2 are analyzed through quantum-mechanical spectral simulations. These bands are interpreted as bound-free emission to the vibrational continuum of the ground state from an excited state of ion-pair character. The lower region of this state, which we have labeled E′, is described approximately by the spectroscopic constants, Te = 19400 cm−1, Re = 9 Å, and ωe = 13 cm−1. Experiments with a single-mode Ar+ laser as excitation source clearly reveal fine structure in the E′ → X spectrum, which was not evident for multimode laser excitation. This fine structure confirms our analysis and supports our suggestion that extensive averaging over initial (υ′, J′) levels is responsible for the absence of fine structure in the spectra excited by a multimode laser. Various averaging mechanisms are investigated in the spectral calculations. The paper includes a brief review of other work on “structured continua” in diatomic spectra, and a semiclassical treatment of such structure, with emphasis on the distinction between “reflection” structure and “interference” structure.  相似文献   

14.
Quantum-mechanical calculations have been performed on various isomers of the (CuNO)+ system. A 2Π ground state is found for the linear CuNO+ and CuON+ isomers and a 2A′ state for the bent CuNO+ and CuON+ isomers. Energy calculations indicate that the linear CuNO+ structure is the most stable, the bent CuNO+ and CuON+ and the linear CuON+ structures are at 0.86 eV, 0.99 eV and 1.04 eV above this respectively. In the CuNO+ → CuON+ interconversion between the linear isomers, three transition states are involved, whereas the bent CuNO+ isomer is found to be an intermediate species. The isomerization barriers, dissociation energies, equilibrium geometries and vibration frequencies are given for all isomers in their ground and first excited states.  相似文献   

15.
A novel method for the synthesis of oligoribonucleotides using 1-(2-cyanoethoxy)ethyl (CEE) as a 2′-hydroxy protecting group has been developed. A CEE group was introduced to the 2′-position of N-acyl-3′,5′-O-silyl-protected ribonucleosides under acidic conditions in good yields. The 2′-O-CEE group was found to be stable in an aqueous or ethanolic ammonia and was quickly removed by treatment with anhydrous tetrabutylammonium fluoride (TBAF). A combination of the use of N-acyl and 2′-O-CEE protecting groups enabled a reliable and complete two-step deprotection, first with NH3–EtOH, then with TBAF in THF, without cleavage of internucleotidic linkages.  相似文献   

16.
The fluorescence excitation and dispersed fluorescence spectra of the open-ring isomer of 1,2-bis(3-methyl-2-thienyl)perfluorocyclopentene have been measured in a supersonic free jet. No vibronic structure has been observed in the excitation spectrum. The intensity of fluorescence gradually increases with the excitation energy in the 25,500–28,700 cm−1 region, indicating that the geometry of the molecule substantially changes upon photoexcitation. The dispersed fluorescence spectrum is anomaly Stokes-shifted with respect to the excitation energy, suggesting that the S2(1B) state is initially excited followed by rapid internal conversion from the S2(1B) to S1(2A) state. The fluorescence is due to the S1(2A)–S0(1A) transition. Density functional theory calculations at the B3LYP/6-31G** level have been carried out to investigate stable conformations responsible for the observed spectra.  相似文献   

17.
A μ-bis(tridentate) ligand named 2-phenyl-1,3-bis[3′-aza-4′-(2′-hydroxyphenyl)-prop-4-en-1′-yl]-1,3-imidazolidine (I) has been synthesized and scrutinized to develop iron(III)-selective sensors. The addition of sodium tetraphenyl borate and various plasticizers, viz., chloronaphthalene, dioctylphthalate, o-nitrophenyl octyl ether and dibutylphthalate has been used to substantially improve the performance of the sensors. The membranes of various compositions of the ligand were investigated and it was found that the best performance was obtained for the membrane of composition (I) (10 mg):PVC (150 mg):chloronaphthalene (200 mg):sodium tetraphenyl borate (9 mg). The sensor showed a linear potential response to iron(III) over wide concentration range 6.3 × 10−6 to 1.0 × 10−1 M (detection limit 5.0 × 10−6 M) with Nernstian slope (20.0 mV/decade of activity) between pH 3.5 and 5.5 with a quick response time of 15 s. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate excellent selectivity for Fe3+ ions over interfering cations. The sensor exhibits adequate life of 2 months with good reproducibility. The sensor could be used in direct potentiometry.  相似文献   

18.
19.
Singlet and triplet energy transfer processes in [Ru(bipy)2(4-methyl-4′-(2-arylethyl)-2,2′-bipyridine)]2+ have been investigated, where ARYL = 2-naphthyl (Ru-Naph), 9-anthryl (Ru-Anth) and 1-pyrenyl (Ru-Pyrene). In each case fluorescence from the aromatic chromophore is quenched by intramolecular energy transfer to Ru(bipy)32+ whereas emission from the Ru(bipy)32+ moiety is controlled by the relative energy of its 3MLCT state and the pendant arene triplet states. Consequently 3MLCT emission is observed for Ru-Naph whereas it is fully quenched for Ru-Anth. When the two states are isoenergetic (e.g. Ru-Pyrene) a long-lived 3MLCT emission is observed which delays with the same lifetime as the pyrene triplet state (5.23 μs).  相似文献   

20.
The dipole moment and polarizability changes have been determined from electroabsorption (EA) spectroscopy of solid films of fac tris(2-(phenyl)pyridinato,N,C2′)iridium (III) [Ir(ppy)3]. The maximum changes in the dipole moment |Δμ|S=(5.0±0.5) D/f (f is the local field correction factor: 1.3–1.7) accompany ground state to the lowest singlet, and |Δμ|T=(1.7±0.5) D/f ground state to the lowest triplet metal-to-ligand charge transfer (MLCT) excited states formation, while the average polarizability change Å3/f2 follows from the fitting procedure throughout the visible absorption spectrum range. The experimental values of |Δμ| as well as energy positions of the MLCT states correlate with the literature results of time-dependent density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号