首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Devarajan D  Ess DH 《Inorganic chemistry》2012,51(11):6367-6375
Density functional theory and absolutely localized molecular orbital energy decomposition analysis calculations were used to calculate and analyze dihydrogen activation transition states and reaction pathways. Analysis of a variety of transition-metal complexes with d(0), d(6), d(8), and d(10) orbital occupation with a diverse range of metal ligands reveals that for transition states, akin to dihydrogen σ complexes, there is a continuum of activated H-H bond lengths that can be classified as "dihydrogen" (0.8-1.0 ?), "stretched or elongated" (1.0-1.2 ?), and "compressed dihydride" (1.2-1.6 ?). These calculations also quantitatively for the first time reveal that the extent to which H(2) is activated in the transition-structure geometry depends on back-bonding orbital interactions and not forward-bonding orbital interactions. This is true regardless of the mechanism or whether the metal ligand complex acts as an electrophile, ambiphile, or nucleophile toward dihydrogen.  相似文献   

2.
A 16-electron dicationic dihydrogen complex [Ru(eta2-H...H)(PP)2][OTf]2 [4; PP = (C6H5CH2)2PCH2CH2P(CH2C6H5)2] has been prepared and characterized by protonating the precursor hydride complex [Ru(H)(PP)2)][OTf] (2) using HOTf. The hydride and dihydrogen complexes are stabilized via agostic interaction of the ortho C-H fragment of the phenyl ring on the benzyl group. The intact nature of the H-H bond in this derivative was established from the short spin-lattice relaxation time and the observation of a substantial J(H,D) of 22.0 Hz for the HD isotopomer. The H-H bond distance calculated from J(H,D) is 1.05 A, which falls under the category of elongated dihydrogen ligands.  相似文献   

3.
Five new monocationic dihydrogen complexes of ruthenium of the type trans-[RuCl(eta(2)-H(2))(PP)(2)][BF(4)] (PP = bis-1,2(diarylphosphino)ethane, aryl = p-fluorobenzyl, 1a, benzyl, 2a, m-methylbenzyl, 3a, p-methylbenzyl, 4a, p-isopropylbenzyl, 5a) have been prepared by protonating the precursor hydride complexes trans-[RuCl(H)(PP)(2)] using HBF(4).OEt(2). The dihydrogen complexes are quite stable and have been isolated in the solid state. The intact nature of the H-H bond in these derivatives has been established from the short spin-lattice relaxation times (T1, ms) and observation of substantial H, D couplings in the HD isotopomers. The H-H bond distances (dHH, A) increase systematically from 0.97 to 1.03 A as the electron-donor ability of the substituent on the diphosphine ligand increases from the p-fluorobenzyl to the p-isopropylbenzyl moiety. The d(HH) in trans-[Ru(eta(2)-H(2))(Cl)((C(6)H(5)CH(2))(2)PCH(2)CH(2)P(CH(2)C(6)H(5))(2))(2)][BF(4)], 2a, was found to be 1.08(5) A by X-ray crystallography. In addition, two new 16-electron dicationic dihydrogen complexes of the type [Ru(eta(2)-H(2))(PP)(2)][OTf](2) (PP = (ArCH(2))(2)PCH(2)CH(2)P(CH(2)Ar)(2), Ar = m-CH(3)C(6)H(4-), 6a, p-CH(3)C(6)H(4)-, 7a) have also been prepared and characterized. These derivatives were found to possess elongated dihydrogen ligands.  相似文献   

4.
Several dihydrogen complexes of ruthenium of the form [Cp/Cp*Ru(P-P)H(2)](+) (P-P = chelating diphosphine ligand) have been prepared by reaction of the corresponding neutral chloride complexes with H(2) in the presence of NaB(ArF)(4). Treatment with D(2) or T(2) gas leads to incorporation of deuterium or tritium in the dihydrogen ligand. Measurement of the resulting H-D and H-T couplings as a function of the temperature and magnetic field gives results consistent with computational studies which predict that the H-H bond distance will increase with temperature and will be significantly shortened by isotopic substitution. The degree of the observed temperature dependence is found to be a critical function of the ancillary ligand set.  相似文献   

5.
Single-crystal neutron diffraction, inelastic neutron scattering, and density functional calculations provide experimental and theoretical analyses of the nature of the osmium-bound, "elongated" dihydrogen ligands in [Cp*OsH(4)(L)][BF(4)] complexes (L = PPh(3), AsPh(3), or PCy(3)). The PPh(3) and AsPh(3) complexes clearly contain one dihydrogen ligand and two terminal hydrides; the H(2) ligand is transoid to the Lewis base, and the H-H vector connecting the central two hydrogen atoms lies parallel to the Ct-Os-L plane (Ct = centroid of Cp* ring). In contrast, in the PCy(3) complex the H-H vector is perpendicular to the Ct-Os-L plane. Not only the orientation of the central two hydrogen atoms but also the H-H bond length between them depends significantly on the nature of L: the H...H distance determined from neutron diffraction is 1.01(1) and 1.08(1) A for L = PPh(3) and AsPh(3), respectively, but 1.31(3) A for L = PCy(3). Density functional calculations show that there is a delicate balance of electronic and steric influences created by the L ligand that change the molecular geometry (steric interactions between the Cp* and L groups most importantly change the Ct-Os-L angle), changing the relative energy of the Os 5d orbitals, which in turn govern the H-H distance, preferred H-H orientation, and rotational dynamics of the elongated dihydrogen ligand. The geometry of the dihydrogen ligand is further tuned by interactions with the BF(4)(-) counterion. The rotational barrier of the bound H(2) ligand in [Cp*OsH(4)(PPh(3))](+), determined experimentally (3.1 kcal mol(-)(1)) from inelastic neutron scattering experiments, is in reasonable agreement with the B3LYP calculated H(2) rotational barrier (2.5 kcal mol(-)(1)).  相似文献   

6.
Complex [CpIr(dmpm)H(2)](2+) (dmpm = bis(dimethylphosphino)methane) has been reported to display temperature-dependent spin-spin coupling constant ((1)J(HD)) and isotope effect on the (1)H NMR chemical shift (Deltadelta). A combined electronic structure density functional theory + quantum nuclear dynamics study is used to determine from first-principles the unusual temperature dependence of the spin-spin coupling constant. It is found that the potential energy surface describing the motion of the Ir-H(2) unit has a deeper minimum in the dihydride region and is characterized by important anharmonicities. These anomalies affect the nature of the vibrational states of the unit and are the main reason for the unusual temperature dependence of (1)J(HD) and Deltadelta. These results suggest experimental tests to identify compressed dihydride transition metal complexes.  相似文献   

7.
    
Three new monocationic molecular hydrogen complexes of ruthenium of the typetrans-[RuCl(η2-H2)(PP)2][BF4] (PP = bis-l,2(diarylphosphino)ethane, aryl = p-fluorobenzyl, benzyl,p-methyl-benzyl) have been prepared by protonating the precursor hydride complexes trans-[RuCl(H)(PP)2] using HBF4.Et20. These three dihydrogen complexes are quite stable and have been isolated in the solid state. The intact nature of the H-H bond in these derivatives has been established from the short spin-lattice relaxation times(T 1, ms) and the observation of substantial H, D couplings in the HD isotopomers. The H-H bond distances(d HH, ?) increase from 0.97 to 1.01 ? as the electron donor ability of the diphosphine ligand increases from the p-fluorobenzyl to the benzyl to the p-methylbenzyl moiety. These dihydrogen complexes constitute the initial stages of elongation of the H-H bond enroute to its cleavage along the reaction coordinate for the oxidative addition of H2 to a metal centre.  相似文献   

8.
The dicationic Os(II) complex [Os(bpy)(PPh(3))(2)(CO)(H(2))](2+) has been prepared as the triflate salt. The presence of a bound dihydrogen ligand is indicated by a short T(1) minimum value consistent with an H-H distance of 1.05 ?. In the partially deuterated derivative J(HD) = 25.5 Hz was observed. By comparison to other structurally characterized complexes, the observed H-D coupling is most consistent with a H-H distance greater than 1 ?, which requires that the bound H(2) ligand be in the slow rotation regime. The dicationic complex is a strong acid, indicating that the bound H(2) is substantially activated toward heterolytic cleavage. The H(2) ligand is tightly bound to the metal center, and does not undergo exchange with D(2) over the course of several weeks at room temperature. A related dicationic Os(II) complex, [Os(bpy)(2)(CO)(H(2))](2+), has also been prepared. A short T(1) minimum value and a J(HD) value of 29.0 Hz in the partially deuterated derivative is most consistent with a H-H distance of 0.99 ?. The bound H(2) ligand of this complex is significantly less activated toward heterolytic cleavage and is stable in solution for less than a day at room temperature.  相似文献   

9.
Mixtures of deuterium labeled complexes (p-XPOCOP)IrH2-xDx (1-6-d0-2) {POCOP = [C6H2-1,3-[OP(tBu)2]2] X = MeO (1), Me (2), H (3), F (4), C6F5 (5), and ArF = 3,5-(CF3)2-C6H3 (6)} have been generated by reaction of (p-XPOCOP)IrH2 complexes with HD gas in benzene followed by removal of the solvent under high vacuum. Spectroscopic analysis employing 1H and 2D NMR reveals significant temperature and solvent dependent isotopic shifts and HD coupling constants. Complexes 1-6-d1 in toluene and pentane between 296 and 213 K exhibit coupling constants JHD of 3.8-9.0 Hz, suggesting the presence of an elongated H2 ligand, which is confirmed by T1(min) measurements of complexes 1, 3, and 6 in toluene-d8. In contrast, complex 6-d1 exhibits JHD = 0 Hz in CH2Cl2 or CDCl2F whereas isotopic shifts up to -4.05 ppm have been observed by lowering the temperature from 233 to 133 K in CDCl2F. The large and temperature-dependent isotope effects are attributed to nonstatistical occupation of two different hydride environments. The experimental observations are interpreted in terms of a two component model involving rapid equilibration of solvated Ir(III) dihydride and Ir(I) dihydrogen structures.  相似文献   

10.
The wide bite angle diphosphines homoxantphos (10,11-dihydro-4,5,-bis(diphenylphosphino)dibenzo[b,f]oxepine), sixantphos (4,6-bis(diphenylphosphino)-10,10-dimethylphenoxasilin), and thixantphos (2,8-dimethyl-4,6-bis(diphenylphosphino)phenoxathiin) were used to prepare cis[MH(2)(diphosphine)(2)] complexes (1a-f) by reaction of [Ru(cod)(cot)] (cod = cyclo-octa-1,5-diene, cot = cyclo-octa-1,3,5-triene) with 2 equiv of the diphosphine under dihydrogen pressure. The electronic properties of the thixantphos ligand were varied. Complexes 1a-f can be protonated with HBF(4) or CF(3)COOH to yield hydrido(dihydrogen) complexes cis[MH(H(2))(diphosphine)(2)](+) (2a-f), which were characterized by VT (variable temperature) NMR and T(1) measurements. These complexes show fast hydrogen atom exchange between the eta(2)-H(2) and the terminal hydride at all temperatures studied. They are thermally unstable toward dihydrogen loss yielding the cationic monohydride complexes cis[MH(diphosphine)(2)](+) (3a-f). Coordination of the eta(2)-H(2) is dominated by sigma --> d donation, and hence, the H-H distance is hardly influenced by the electronic properties of the ligands.  相似文献   

11.
Thermodynamic and kinetic parameters for the oxidative addition of H2 to [Rh(I)(bpy)2]+ (bpy = 2,2'-bipyridine) to form [Rh(III)(H)2(bpy)2]+ were determined from either the UV-vis spectrum of equilibrium mixtures of [Rh(I)(bpy)2]+ and [Rh(III)(H)2(bpy)2]+ or from the observed rates of dihydride formation following visible-light irradiation of solutions containing [Rh(III)(H)2(bpy)2]+ as a function of H2 concentration, temperature, and pressure in acetone and methanol. The activation enthalpy and entropy in methanol are 10.0 kcal mol(-1) and -18 cal mol(-1) K(-1), respectively. The reaction enthalpy and entropy are -10.3 kcal mol(-1) and -19 cal mol(-1) K(-1), respectively. Similar values were obtained in acetone. Surprisingly, the volumes of activation for dihydride formation (-15 and -16 cm(3) mol(-1) in methanol and acetone, respectively) are very close to the overall reaction volumes (-15 cm(3) mol(-1) in both solvents). Thus, the volumes of activation for the reverse reaction, elimination of dihydrogen from the dihydrido complex, are approximately zero. B3LYP hybrid DFT calculations of the transition-state complex in methanol and similar MP2 calculations in the gas phase suggest that the dihydrogen has a short H-H bond (0.823 and 0.810 Angstroms, respectively) and forms only a weak Rh-H bond (1.866 and 1.915 Angstroms, respectively). Equal partial molar volumes of the dihydrogenrhodium(I) transition state and dihydridorhodium(III) can account for the experimental volume profile found for the overall process.  相似文献   

12.
Reaction of [Cp*Ir(P-P)Cl][B(C6F5)4] (P-P = bisdimethydiphosphinomethane (dmpm), bisdiphenyldiphosphinomethane (dppm)) with [Et3Si][B(C6F5)4] in methylene chloride under 1 atm of hydrogen gas affords the dicationic compressed dihydride complexes [Cp*Ir(P-P)H2][B(C6F5)4]2. These dicationic complexes are highly acidic and are very readily deprotonated to the corresponding monohydride cations. When the preparative reaction is carried out under HD gas, the hydride resonance exhibits JHD = 7-9 Hz, depending upon the temperature of observation, with higher values of JHD observed at higher temperatures. A thermally labile rhodium analogue, [CpRh(dmpm)(H2)][B(C6F5)4]2, was prepared similarly. A sample prepared with HD gas gave JHD = 31 Hz and J(HRh) = 31 Hz, allowing the Rh complex to be identified as a dihydrogen complex. Quantum dynamics calculations on a density functional theory (DFT) potential energy surface have been used to explore the structure of the Ir complexes, with particular emphasis on the nature of the potential energy surface governing the interaction between the two hydride ligands and the Ir center.  相似文献   

13.
Computational and experimental results presented in this paper demonstrate that the H-H distance in stretched dihydrogen complexes can be hypersensitive to a variety of weak intra- and intermolecular interactions, including those with bulky ligands and solvent molecules, hydrogen-bonding interactions, or ion-pairing. Particularly, the complex IrH(H...H)Cl(2)(P(i)Pr(3))(2) which contains a stretched dihydrogen ligand in the crystalline form, as shown by neutron diffraction, is a trihydride in solution. The difference is due to the intermolecular Ir-Cl...H-Ir hydrogen bonding in the solid.  相似文献   

14.
The use of the phosphine PPh2py instead of PPh3 in complexes of the type [Cp*RuH(P)2] enormously alters the kinetic control of the proton-transfer reactions over this compound and its chemical behavior. The reaction at low temperature of [Cp*RuH(PPh2py)2], 2, with HBF4 gives as products the classical dihydride trans-[Cp*RuH2(PPh2py)2](BF4), 3 (1 equiv of HBF4) or the dihydrogen-bonded complex [Cp*RuHH(PPh2pyH)(PPh2py)](BF4)2, 4 (2 equiv of HBF4). These complexes exhibit very accessible intramolecular processes of proton transfer, and finally, a slow release of H2 takes place at room temperature. Derivatives 2 and 3 are active catalysts for the deuterium labeling of H2 using methanol-d4 as an isotopic source. This demonstrates that the release of hydrogen is reversible, that the heterolytic activation of H2 is an easy process, and that acid species participate in the intramolecular proton-transfer processes. These observations are supported by reaction-coordinate calculations at the DFT/B3LYP level that show the existence of a low-energy reaction path that easily transforms the classical trans dihydride complex into the nonclassical cis dihydrogen compound in a reversible way, through the involvement of hydrogen- and dihydrogen-bonded intermediates and the essential participation of the pyridine centers. The different energy minima of this reaction profile are very accessible through low-energy transition states, all of which have been located.  相似文献   

15.
Of the several hundred examples of transition metal dihydrogen complexes that have been reported to date, the vast majority have H-H distances of less than 1.0 Angstrom. A small number of complexes have been reported with distances in the range of 1.1 to 1.5 Angstrom. These complexes have been termed elongated dihydrogen complexes. In this review, experimental methods for structure determination of such complexes are summarized, along with computational approaches which have proven useful in understanding the structures of these molecules.  相似文献   

16.
Addition of H2 (4 atm at 298 K) to [Rh(nbd)(PR3)2][BAr(F)4] [R = Cy, iPr] affords Rh(III) dihydride/dihydrogen complexes. For R = Cy, complex 1a results, which has been shown by low-temperature NMR experiments to be the bis-dihydrogen/bis-hydride complex [Rh(H)2(eta2-H2)2(PCy3)2][BAr(F)4]. An X-ray diffraction study on 1a confirmed the {Rh(PCy3)2} core structure, but due to a poor data set, the hydrogen ligands were not located. DFT calculations at the B3LYP/DZVP level support the formulation as a Rh(III) dihydride/dihydrogen complex with cis hydride ligands. For R = iPr, the equivalent species, [Rh(H)2(eta2-H2)2(P iPr3)2][BAr(F)4] 2a, is formed, along with another complex that was spectroscopically identified as the mono-dihydrogen, bis-hydride solvent complex [Rh(H)2(eta2-H2)(CD2Cl2)(P iPr3)2][BAr(F)4] 2b. The analogous complex with PCy3 ligands, [Rh(H)2(eta2-H2)(CD2Cl2)(PCy3)2][BAr(F)4] 1b, can be observed by reducing the H2 pressure to 2 atm (at 298 K). Under vacuum, the dihydrogen ligands are lost in these complexes to form the spectroscopically characterized species, tentatively identified as the bis hydrides [Rh(H)2(L)2(PR3)2][BAr(F)4] (1c R = Cy; 2c R = iPr; L = CD2Cl2 or agostic interaction). Exposure of 1c or 2c to a H2 atmosphere regenerates the dihydrogen/bis-hydride complexes, while adding acetonitrile affords the bis-hydride MeCN adduct complexes [Rh(H)2(NCMe)2(PR3)2][BAr(F)4]. The dihydrogen complexes lose [HPR3][BAr(F)4] at or just above ambient temperature, suggested to be by heterolytic splitting of coordinated H2, to ultimately afford the dicationic cluster compounds of the type [Rh6(PR3)6(mu-H)12][BAr(F)4]2 in moderate yield.  相似文献   

17.
A series of iridium and rhodium pincer complexes have been synthesized and characterized: [(POCOP)Ir(H)(H(2))] [BAr(f)(4)] (1-H(3)), (POCOP)Rh(H(2)) (2-H(2)), [(PONOP)Ir(C(2)H(4))] [BAr(f)(4)] (3-C(2)H(4)), [(PONOP)Ir(H)(2))] [BAr(f)(4)] (3-H(2)), [(PONOP)Rh(C(2)H(4))] [BAr(f)(4)] (4-C(2)H(4)) and [(PONOP)Rh(H(2))] [BAr(f)(4)] (4-H(2)) (POCOP = κ(3)-C(6)H(3)-2,6-[OP(tBu)(2)](2); PONOP = 2,6-(tBu(2)PO)(2)C(5)H(3)N; BAr(f)(4) = tetrakis(3,5-trifluoromethylphenyl)borate). The nature of the dihydrogen-metal interaction was probed using NMR spectroscopic studies. Complexes 1-H(3), 2-H(2), and 4-H(2) retain the H-H bond and are classified as η(2)-dihydrogen adducts. In contrast, complex 3-H(2) is best described as a classical dihydride system. The presence of bound dihydrogen was determined using both T(1) and (1)J(HD) coupling values: T(1) = 14 ms, (1)J(HD) = 33 Hz for the dihydrogen ligand in 1-H(3), T(1)(min) = 23 ms, (1)J(HD) = 32 Hz for 2-H(2), T(1)(min) = 873 ms for 3-H(2), T(1)(min) = 33 ms, (1)J(HD) = 30.1 Hz for 4-H(2).  相似文献   

18.
The reaction of CpMo(CO)(dppe)Cl (dppe = Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)2]- gives the molybdenum hydride complex CpMo(CO)(dppe)H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe)H in CH3CN is quasi-reversible, with the peak potential at -0.15 V (vs Fc/Fc+). The reaction of CpMo(CO)(dppe)H with 1 equiv of Ph3C+BF4- in CD3CN gives [CpMo(CO)(dppe)(NCCD3)]+ as the organometallic product, along with dihydrogen and Gomberg's dimer (which is formed by dimerization of Ph3C.). The proposed mechanism involves one-electron oxidation of CpMo(CO)(dppe)H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe)H].+. Proton transfer from [CpMo(CO)(dppe)H].+ to CpMo(CO)(dppe)H, loss of dihydrogen from [CpMo(CO)(dppe)(H)2]+, and oxidation of Cp(CO)(dppe)Mo. by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe)H because of deprotonation of [CpMo(CO)(dppe)H].+ by the amine. Protonation of CpMo(CO)(dppe)H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)2]+OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf).  相似文献   

19.
This work deals with the type and incidence of nonclassical Si--H and H--H interactions in a family of silylhydride complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(X)] (X=SiMe(n)Cl(3-n), H, Me, n=0-3) and [Fe(Cp)(Me(3)P)(SiMe(n)Cl(3-n))(2)H] (n=0-3). DFT calculations complemented by atom-in-molecule analysis and calculations of NMR hydrogen-silicon coupling constants revealed a surprising diversity of nonclassical Si--H and H--H interligand interactions. The compounds [Fe(Cp)(L)(SiMe(n)Cl(3-n))(2)H] (L=CO, PMe(3); n=0-3) exhibit an unusual distortion from the ideal piano-stool geometry in that the silyl ligands are strongly shifted toward the hydride and there is a strong trend towards flattening of the {FeSi(2)H} fragment. Such a distortion leads to short Si--H contacts (range 2.030-2.075 A) and large Mayer bond orders. A novel feature of these extended Si--H interactions is that they are rather insensitive towards the substitution at the silicon atom and the orientation of the silyl ligand relatively the Fe--H bond. NMR spectroscopy and bonding features of the related complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(Me)] (n=0-3) allow for their rationalization as usual eta(2)-Si--H silane sigma-complexes. The series of "dihydride" complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(2)] (n=0-3) is different from the previous two families in that the type of interligand interactions strongly depends on the substitution on silicon. They can be classified either as usual dihydrogen complexes, for example, [Fe(Cp)(OC)(SiMe(2)Cl)(eta(2)-H(2))], or as compounds with nonclassical H--Si interactions, for example, [Fe(Cp)(OC)(H)(2)(SiMe(3))] (16). These nonclassical interligand interactions are characterized by increased negative J(H,Si) (e.g. -27.5 Hz) and increased J(H,H) (e.g. 67.7 Hz).  相似文献   

20.
Insertion of CS2 into one of the Ir-H bonds of [Ir(H)5(PCy3)2] takes place to afford the dihydrido dithioformate complex cis-[Ir(H)2(eta2-S2CH)(PCy3)2] accompanied by the elimination of H2. Protonation of the dithioformate complex using HBF4.Et2O gives cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] wherein the H atom undergoes site exchange between the dihydrogen and the hydride ligands. The dynamics was found to be so extremely rapid with respect to the NMR time scale that the barrier to exchange could not be measured. Partial deuteration of the hydride ligands resulted in a J(H,D) of 6.5 and 7.7 Hz for the H2D and the HD2 isotopomers of cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4], respectively. The H-H distance (d(HH)) for this complex has been calculated to be 1.05 A, which can be categorized under the class of elongated dihydrogen complexes. The cis-[Ir(H)(eta2-H2)(eta2-S2CH)(PCy3)2][BF4] complex undergoes substitution of the bound H2 moiety with CH(3)CN and CO resulting in new hydride derivatives, cis-[Ir(H)(L)(eta2-S2CH)(PCy3)2][BF4] (L = CH3CN, CO). Reaction of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] with electrophilic reagents such as MeOTf and Me3SiOTf afforded a new hydride aquo complex cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] via the elimination of CH4 and Me3SiH, respectively, followed by the binding of a water molecule (present in trace quantities in the solvent) to the iridium center. The X-ray crystal structures of cis-[Ir(H)2(eta2-S2CH)(PCy3)2] and cis-[Ir(H)(H2O)(eta2-S2CH)(PCy3)2][OTf] have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号