首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for the quantitative analysis of colistin sulfate by capillary zone electrophoresis is described. Since colistin components have five free amino groups, they tend to adsorb onto the capillary wall and cause peak tailing. It was found that triethanolamine (TEA)-phosphate buffer at pH 2.5 was useful to reduce such adsorption. Methyl-beta-cyclodextrin (M-beta-CD) and 2-propanol (IPA) were found necessary for selectivity enhancement. In order to optimize the separation parameters and predict the method robustness, a central composite design was performed including three variables, namely concentration of M-beta-CD, TEA, and IPA. The effects of capillary length and applied voltage on separation were also investigated. The optimal conditions established were: 140 mM TEA-phosphate buffer containing 5 mM M-beta-CD and 6% v/v IPA, a capillary with 55 cm total length (50 microm inner diameter, 47 cm from inlet to detection window) and 24 kV applied voltage. The method was found to be robust when the variables were changed in the following range: 4-6 mM M-beta-CD, 5-7% v/v IPA, and 130-150 mM TEA. Further, the linearity, limit of detection (LOD), and limit of quantitation (LOQ), as well as repeatability for both colistin A and B were examined and three commercial samples were quantitatively analyzed.  相似文献   

2.
A new capillary zone electrophoresis method for collagen quantitation was developed and validated according to the International Council for Harmonization guideline Q2 (R1). The Sircol collagen assay and ultraviolet spectrometry were employed as reference methods. Capillary zone electrophoresis enables specific, simple, and fast determination within 9 min. It is less user-dependent and more automated than the Sircol collagen assay. With a limit of detection of 18.0 μg/mL, the new method is less sensitive than the Sircol collagen assay, which has a limit of detection of 6.5 μg/mL. Nonetheless, capillary zone electrophoresis covers a wider linearity range (50-400 μg/mL) compared to the Sircol collagen assay (5-80 μg/mL), with similar precision. Additional advantages of capillary zone electrophoresis are the ability to gain information on collagen integrity and to simultaneously determine native and denatured collagens. This approach represents a modern and legitimate alternative to the Sircol collagen assay. The developed method has been successfully applied to the study of three collagen products and samples from forced degradation.  相似文献   

3.
Summary A capillary zone electrophoresis method is proposed for the separation of five antidepressants. Optimum conditions for the separation were investigated. A background electrolyte solution consisting of 40 mM phosphate buffer adjusted to pH 2.5, hydrodynamic injection, and a 28 kV separation voltage were used. Relative standard deviations (RSD) were <0.9% and <1.7% for migration time and corrected peak area (n=21), respectively. The detection limits for the five antidepressants ranged from 0.3 to 0.7 mg L−1. The stability of the solutions, linearity, accuracy, and precision were examined during validation of the method. The method is rapid and sensitive, when it was tested for the analysis of pharmaceutical formulations the recoveries obtained were between 98 and 103% of the nominal content.  相似文献   

4.
A capillary zone electrophoretic method has been developed for the determination of four coumarins--skimmin, scopolin, scopoletin, and umbelliferone-in Saussurea superba with UV detection at 254 nm. The capillary temperature was kept constant at 25 degrees C. Effects of buffer pH, electrolyte concentration, organic modifier, and applied voltage on migration behavior were studied systematically. The optimum conditions for separation were achieved by using 30 mM borate buffer at pH 9.02 containing 15% (v/v) methanol as the electrolyte and 25 kV as the applied voltage. For all analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, and accuracy. The validated method was successfully applied to the simultaneous determination of the four analytes in S. superba.  相似文献   

5.
Summary Capillary zone electrophoresis using cyclodextrins and a chiral crown ether as buffer constituents was studied for the enantiomeric separation of drugs and amino acids. Based on results obtained from separation of racemic -amino acids both chiral selectors are compared with respect to resolution, efficiency and retention time. For (±)-Quinagolide effects of buffer composition and temperature are examined using -cyclodextrin as chiral agent. Optimum conditions were pH 2.5 at 30 mmol L–1 -cyclodextrin. A linear dependence of retention on -cyclodextrin concentration allowed calculation of formation constants of the host-guest complexes. Buffer concentration and temperature also influence resolution. The application of a chiral crown ether to the separation of optical isomers in capillary zone electrophoresis is described for the first time. Chiral recognition of solutes depends on the formation of protonated alkyl amines and separation is attributed to the formation of diastereomeric host-guest complexes with different interactions for each enantiomer. The effects of crown ether concentration on resolution are presented.  相似文献   

6.
Summary A capillary zone electrophoresis method has been developed and validated for the analysis of chlortetracycline and related substances. The influence of the type of buffer, pH and concentration of the buffer were investigated. In all cases 1 mM EDTA was added to prevent metal ion complexation. Instrumental parameters such as capillary temperature and applied voltage were optimised. The following methods is proposed: capillary: fused silica, 44 cm (36 cm effective length), 50 μm i.d.; buffer: 120 mM sodium tetraborate including 1mM EDTA at pH 8.5; voltage: 10 kV; temperature: 25°C; detection wavelength: 280 nm. The robustness of the method has been examined by means of a full-fraction factorial design. The parameters for validation namely relative standard deviation, linearity, precision, limit of detection and limit of quantitation are also reported.  相似文献   

7.
The investigation on capillary electrophoretic enantioseparation of six synthetic compounds containing vicinal diol groups has been undertaken to acquire the optimum conditions using native beta-cyclodextrin (beta-CD) as chiral selector and borate as a background electrolyte. The separation was carried out in an uncoated capillary (58.5 cm x 75 microm i.d., effective length 48.5 cm) and the effects of several important factors were investigated in detail. The results showed that beta-CD as a chiral selector exhibited good enantioselectivity and that the enantioseparation was greatly influenced by the structure of the diols, the borate concentration and the buffer pH. The optimum performance was obtained for the chiral vicinal diols under the conditions of 200 mM borate buffer of pH 9.8 containing 1.7% beta-CD at an applied voltage of 15 kV and a capillary temperature of 20 degrees C. Under the conditions, four diols were baseline separated with fast analysis time and the good theoretical plate numbers (above 10 x 10(4)) and favorable migration-time reproducibilities (RSDs below 3.0%) were obtained. The separation results were satisfactory.  相似文献   

8.
Summary Cyclodextrin-mediated, capillary zone electrophoresis was used for the chiral separation of chloroquine and pemoline. Optimization experiments for the choice of cyclodextrins and the concentration of sulfobutyl ether β-cyclodextrin were performed. Complete separations were obtained with a resolution of 2.1 for chloroquine in 2.5 mM sulfobutyl ether β-cyclodextrin and a resolution of 1.4 for pemoline in 1.0 mM sulfobutyl ether β-cyclodextrin, respectively, from which further biomedical research, such as pharmacodynamic or pharmacokinetic study and quantitative determination, could subsequently be facilitated.  相似文献   

9.
10.
To improve the detection sensitivity and determine phenotypes of haptoglobin (Hp), a prefilling technique was developed and tested in capillary electrophoresis (CE) with UV–vis absorbance detection. Adding 0.01% sodium dodecyl sulfate (SDS) to the protein sample and 0.1% SDS to the prefilling buffer solution, on-line stacking and microheterogeneity separation of Hp were achieved. In addition, the influences of pH, buffer concentration, sample and prefilling buffer SDS concentration upon resolution were examined. Under optimized conditions, Hp-microheterogeneity was well resolved and two phenotypes of Hp (Hp 1-1 and Hp 2-2) were differentiated. This method was applied to the analysis of sera from normal individuals and β-Thalassemia patients. After the depletion of albumin (HSA) and immunoglobulin G (IgG), this method allowed to determine two phenotypes in different individuals and to detect the decrease of Hp in β-Thalassemia patients. Featuring high efficiency, speed and simplicity, the proposed method shows great potential for use in clinical diagnosis and proteome research.  相似文献   

11.
A cyclodextrin-modified micellar capillary electrophoretic method (MECC) was developed using mixtures of beta, cyclodextrins (beta-CD) and mono-3-O-phenylcarbamoyl-beta-CD as chiral additives for the chiral separation of miconazole with the dual CDs systems. The enantiomers were resolved using a running buffer of 50 mmol/L borate pH 9.5 containing 15 mmol/L beta-CD and 15 mmol/L mono-3-O-phenylcarbamoyl-beta-CD containing 50 mmol/L sodium dodecyl sulfate and 1 mol/L urea. A study of the respective influence of the beta-CD and the mono-3-O-phenylcarbamoyl-beta-CD concentration was performed to determine the optimal conditions with respect to the resolution. Good repeatability of the method was obtained.  相似文献   

12.
Zhong H  Yao Q  Breadmore MC  Li Y  Lu Y 《The Analyst》2011,136(21):4486-4491
On-line concentration via Electrokinetic Supercharging (EKS) was used to enhance the sensitivity of the capillary electrophoretic separation of the four flavonoids naringenin, hesperetin, naringin and hesperidin. Separation conditions, including the background electrolyte pH and concentration, the length and choice of terminator and the electrokinetic injection time were optimized. The optimum conditions were: a background electrolyte of 30 mM sodium tetraborate (pH 9.5) containing 5% (v/v) of methanol, electrokinetic injection of the sample (130 s, -10 kV) followed by hydrodynamic injecting of 100 mM 2-(cyclohexylamino)ethanesulfonic acid (CHES) (17 s, 0.5 psi) as terminator, and separation with -20 kV. Under these conditions the four flavonoids could be separated with a sample-to-sample time of 15 min and detection limits from 2.0 to 6.8 ng mL(-1). When compared to a conventional hydrodynamic injection the sensitivity was enhanced between 824 and 1515 times which is 7.6-16 times higher than other CE methods for the on-line concentration of flavonoids. The applicability of the developed method was demonstrated by the detection of the four flavonoids in an aqueous extract of Clematis hexapetala pall.  相似文献   

13.
Capillary zone electrophoresis (CZE) with cyclodextrin (CD) in the polyacrylamide-coated capillary was used to study metallothionein (MT) forms in the horse kidney preparation produced commercially by Sigma. It is known that CDs form complexes with hydrophobic amino acids. The results show that the presence of CD improves the separability of the various MT forms, including the MT-IA and the MT-IB forms, metallothionein aggregates, as well as the so far unidentified a and b forms. This was true both below and above the isoelectric points (pIs), although the migration times were somewhat longer at increasing CD concentrations for runs at constant voltage than with constant current.  相似文献   

14.
The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.  相似文献   

15.
16.
A cyclodextrin modified capillary zone electrophoresis (CD-CZE) for the enantiomeric separation of tetrahydroprotoberberine N-metho salts was established. The resolution was optimized by changing the concentration of the electrolyte solution, hydroxypropyl-beta-CD (0.02 M, 0.07 M, or 0.14 M) or dimethyl-beta-CD (0.05 M or 0.15 M) in phosphate buffer (pH 2.5 or 3) containing 10% acetonitrile with an applied voltage of 20 kV. This method was applied toward the enantioselective bio-conversion of quaternary tetrahydroprotoberberine N-metho salts in cultured cells of Corydalis species.  相似文献   

17.
Dong Q  Jin W  Shan J 《Electrophoresis》2002,23(4):559-564
The precapillary derivatization of 20 amino acids with naphthalene-2,3-dicarboxaldehyde (NDA) and CN(-) was investigated. All these derivatized amino acids could be oxidized on the carbon fiber microdisk bundle electrode except proline. Capillary zone electrophoresis with electrochemical detection was employed for the analysis of 19 amino acids. The optimum conditions of separation and detection were borate, pH 9.48, for the electrolyte, 18 kV for the separation voltage and 1.15 V versus a saturated calomel electrode for the detection potential. Limits of detection of concentration or mass for individual amino acids were between 1.7 x 10(-7) and 1.8 x 10(-6) mol/L or 84 and 893 amol (according to the signal-to-noise ratio of 3) for the injection voltage of 6 kV and injection time of 10 s. The relative standard deviations were between 0.80 and 2.3% for the migration times and 1.4 and 6.4% for the electrophoretic peak currents. From a mixture of 19 amino acids, 10 amino acids (Arg, Lys, Orn, Try, Ser, Ala, Gly, Cys, Glu, Asp) could be well separated. The other 9 amino acids appeared on three electrophoretic peaks. From the samples, in which the nine amino acids do not exist simultaneously, some of them could also be detected. The method was applied to the determination of amino acids in beer by the standard addition method. The recovery for the amino acids in beer was 91-109%.  相似文献   

18.
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes.  相似文献   

19.
Yanqing Wang  Changgang Huang  Li He 《Talanta》2009,77(5):1667-1674
This paper describes the enhanced separation of lomefloxacin, sparfloxacin, fleroxacin, norfloxacin, ofloxacin, gatifloxacin and pazufloxacin by capillary zone electrophoresis (CZE) using silica nanoparticles (SiNPs) as running buffer additive. The impact of SiNPs concentration on the resolution and selectivity of separation was investigated and a given value of SiNPs was finally chosen under the optimum conditions. The addition of the SiNPs to the running buffer enabled electroosmotic flow (EOF) decrease and permitted full interaction between SiNPs and analytes. The influence of separation voltage, pH and buffer concentration on the separation in the presence of SiNPs was examined. Interactions between drugs and nanoparticles during the separation are discussed; the determination of interaction constants is also achieved. A good resolution of seven quinolones was obtained within 15 min in a 50 cm effective length fused-silica capillary at a separation voltage of +10 kV in a 12 mM disodium tetraborate-phosphate buffer (pH 9.08) containing 5.2 μg mL−1 SiNPs.  相似文献   

20.
Analysis of illicit amphetamine seizures by capillary zone electrophoresis   总被引:2,自引:0,他引:2  
Capillary zone electrophoresis was applied for the determination of amphetamine and related substances in seized drugs. A buffer made of 0.1 M phosphoric acid adjusted to pH 3.0 with triethanolamine was selected. With this background electrolyte, triethanolamine is adsorbed to the capillary wall and the electroosmotic flow is reversed. This gives rise to peaks with good symmetry, high efficiency and reproducible migration times. The separation of the different analytes was performed in a fused-silica capillary thermostatted at 25 degrees C and the applied voltage was 25 kV. Under these experimental conditions, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethamphetamine, N-methyl-1-(1,3-benzodioxol-5-yl)-2-butamine and ephedrine were resolved within 8 min and without interference from adulterants usually found in illicit powders. Their identification by the migration time was confirmed by their UV spectra recorded with a diode array UV detector (190-350 nm). The selected method was then applied to identify these substances in illicit tablets known as "Ecstasy" and the MDMA determined in these samples according to a laboratory validation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号