首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, two-photon fluorescence microscopy on giant unilamellar vesicles and tapping-mode atomic force microscopy (AFM) are applied to follow the insertion of a fluorescently (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY) labeled and completely lipidated (hexadecylated and farnesylated) N-Ras protein into heterogeneous lipid bilayer systems. The bilayers consist of the canonical raft mixture 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol, which-depending on the concentration of the constituents-separates into liquid-disordered (l(d)), liquid-ordered (l(o)), and solid-ordered (s(o)) phases. The results provide direct evidence that partitioning of N-Ras occurs preferentially into liquid-disordered lipid domains, which is also reflected in a faster kinetics of incorporation into the fluid lipid bilayers. The phase sequence of preferential binding of N-Ras to mixed-domain lipid vesicles is l(d) > l(o) > s(o). Intriguingly, we detect, using the better spatial resolution of AFM, also a large proportion of the lipidated protein located at the l(d)/l(o) phase boundary, thus leading to a favorable decrease in line tension that is associated with the rim of the demixed phases. Such an interfacial adsorption effect may serve as an alternative vehicle for association processes of signaling proteins in membranes.  相似文献   

2.
3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol % sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterols. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol % cholesterol), the average lifetime of trans-parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average lifetime of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial.  相似文献   

3.
Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.  相似文献   

4.
Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase.  相似文献   

5.
Lipid vesicles are designed with functional chemical groups to promote vesicle fusion on template-stripped gold (TS Au) surfaces that does not spontaneously occur on unfunctionalized Au surfaces. Three types of vesicles were exposed to TS Au surfaces: (1) vesicles composed of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids; (2) vesicles composed of lipid mixtures of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) and 97.5 mol % of POPC; and (3) vesicles composed of 2.5 mol % of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG) and 97.5 mol % POPC. Atomic force microscopy (AFM) topography and force spectroscopy measurements acquired in a fluid environment confirmed tethered lipid bilayer membrane (tLBM) formation only for vesicles composed of 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC, thus indicating that the sulfur-containing PDP group is necessary to achieve tLBM formation on TS Au via Au-thiolate bonds. Analysis of force-distance curves for 2.5 mol % DSPE-PEG-PDP/97.5 mol % POPC tLBMs on TS Au yielded a breakthrough distance of 4.8 ± 0.4 nm, which is about 1.7 nm thicker than that of POPC lipid bilayer membrane formed on mica. Thus, the PEG group serves as a spacer layer between the tLBM and the TS Au surface. Fluorescence microscopy results indicate that these tLBMs also have greater mechanical stability than solid-supported lipid bilayer membranes made from the same vesicles on mica. The described process for assembling stable tLBMs on Au surfaces is compatible with microdispensing used in array fabrication.  相似文献   

6.
We have investigated the effect of well-defined nanoscale topography on the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicle adsorption and supported phospholipid bilayer (SPB) formation on SiO2 surfaces using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). Unilamellar lipid vesicles with two different sizes, 30 and 100 nm, were adsorbed on pitted surfaces with two different pit diameters, 110 and 190 nm, as produced by colloidal lithography, and the behavior was compared to results obtained on flat surfaces. In all cases, complete bilayer formation was observed after a critical coverage of adsorbed vesicles had been reached. However, the kinetics of the vesicle-to-bilayer transformation, including the critical coverage, was significantly altered by surface topography for both vesicle sizes. Surface topography hampered the overall bilayer formation kinetics for the smaller vesicles, but promoted SPB formation for the larger vesicles. Depending on vesicle size, we propose two modifications of the precursor-mediated vesicle-to-bilayer transformation mechanism used to describe supported lipid bilayer formation on the corresponding flat surface. Our results may have important implications for various lipid-membrane-based applications using rough or topographically structured surfaces.  相似文献   

7.
Glycosylphosphatidyl-inositol (GPI)-anchored proteins preferentially localize in the most ordered regions of the cell plasma membrane. Acyl and alkyl chain composition of GPI anchors influence the association with the ordered domains. This suggests that, conversely, changes in the fluid and in the ordered domains lipid composition affect the interaction of GPI-anchored proteins with membrane microdomains. Validity of this hypothesis was examined by investigating the spontaneous insertion of the GPI-anchored intestinal alkaline phophatase (BIAP) into the solid (gel) phase domains of preformed supported membranes made of dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC), DOPC/sphingomyelin (DOPC/SM), and palmitoyloleoylphosphatidylcholine/SM (POPC/SM). Atomic force microscopy (AFM) showed that BIAP inserted in the gel phases of the three mixtures. However, changes in the lipid composition of membranes had a marked effect on the protein containing bilayer topography. Moreover, BIAP insertion was associated with a net transfer of phospholipids from the fluid to the gel (DOPC/DPPC) or from the gel to the fluid (POPC/SM) phases. For DOPC/SM bilayers, transfer of lipids was dependent on the homogeneity of the gel SM phase. The data strongly suggest that BIAP interacts with the most ordered lipid species present in the gel phases of phase-separated membranes. They also suggest that GPI-anchored proteins might contribute to the selection of their own microdomain environment.  相似文献   

8.
Diacylglycerols (DAGs) are important second messengers in biomembranes, and they can activate protein kinase C and many other enzymes and receptors. However, their interactions with cholesterol and other lipids have not been previously studied using molecular dynamics (MD) simulation. In this study, nine independent atomistic MD simulations were performed to specifically investigate the interactions between di16:0DAG, 16:0,18:1-phosphatidylcholine (POPC), and cholesterol. Despite of their substantial differences in chemical structure, DAG and cholesterol produce some very similar effects in POPC bilayers: increasing acyl chain order and bilayer thickness, reducing volume-per-lipid, and decreasing lateral diffusion of molecules. More significantly, DAG also produces a strong "condensing effect" in PC bilayers. In comparison, cholesterol is more effective than DAG in producing the above effects. The driving force for the condensing effect is their molecular shape: DAG and cholesterol both have small polar headgroups and large hydrophobic bodies. In a lipid bilayer, in order to avoid the unfavorable exposure of their hydrophobic parts to water, neighboring phospholipid headgroups move toward cholesterol or DAG to provide cover. Thus, seemingly complex interactions between DAG, cholesterol and phospholipid can be clearly explained using the Umbrella Model. Our simulations confirmed the hypothesis that DAG increases the spacing between phospholipid headgroups, which is important for activating protein kinase C and other enzymes. Interestingly, our simulations also show that the conventional wisdom that the spacing created by a DAG is directly above the DAG molecule is incorrect; instead, the largest spacing usually occurs between the first and the second nearest-neighbor PC headgroups from a DAG, due to the umbrella effect.  相似文献   

9.
We contribute to the rapidly emerging interest in the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for chemical analysis of biological materials by presenting a careful TOF-SIMS investigation of structurally different SiO2-supported phospholipid assemblies. Freeze-dried supported 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (POPC) bilayers, Langmuir-Blodgett POPC monolayers, and disordered thick POPC films were investigated. Compared with the two latter structures, the supported bilayer showed a strong (5-10 times) enhancement in the yield of both the molecular and the dimer ion peaks of POPC, suggesting that the molecular peak may be used as a sensitive indicator for changes in the membrane structure and, in particular, an indicator for the presence of bilayer structures in, e.g., cell and tissue samples. The detection efficiency and the useful lateral resolution indicate that a lateral resolution of around 100 nm can be obtained on all structures by imaging the phosphocholine ion at 184 u using Bi3+ primary ions. For the chemically specific molecular peak at 760 u, the measured detection efficiencies correspond to a useful lateral resolution of around 2 microm for the bilayer structure. The results are discussed in relation to recent dynamic SIMS (nano-SIMS) analysis of freeze-dried supported lipid bilayers, displaying similar or higher lateral resolution, but which in contrast to TOF-SIMS requires isotopic labeling of the analyzed lipids.  相似文献   

10.
Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state (2)H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed (2)H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures. Hydrophobic matching explains the occurrence of raftlike domains in cellular membranes at intermediate cholesterol concentrations but not saturating amounts of cholesterol.  相似文献   

11.
Pascoe RJ  Foley JP 《Electrophoresis》2003,24(24):4227-4240
The physical, electrophoretic and chromatographic properties (mean diameter, electroosmotic flow, electrophoretic mobility, elution range, efficiency, retention, and hydrophobic, shape, and chemical selectivity) of three surfactant vesicles and one phospholipid vesicle were investigated and compared to a conventional micellar pseudostationary phase comprised of sodium dodecyl sulfate (SDS). Chemical selectivity (solute-pseudostationary phase interactions) was discussed from the perspective of linear solvation energy relationship (LSER) analysis. Two of the surfactant vesicles were formulated from nonstoichiometric aqueous mixtures of oppositely charged, single-tailed surfactants, either cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) in a 3:7 mole ratio or octyltrimethylammonium bromide (OTAB) and SDS in a 7:3 mole ratio. The remaining surfactant vesicle was comprised solely of bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in 10% v/v methanol, and the phospholipid vesicle consisted of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and phosphatidyl serine (PS) in 8:2 mole ratio. The mean diameters of the vesicles were 76.3 nm (AOT), 86.9 nm (CTAB/SOS), 90.1 nm (OTAB/SDS), and 108 nm (POPC/PS). Whereas the coefficient of electroosmotic flow (10(-4) cm2 V(-1) s(-1)) varied considerably (1.72 (OTAB/SDS), 3.77 (CTAB/SOS), 4.05 (AOT), 5.26 (POPC/PS), 5.31 (SDS)), the electrophoretic mobility was fairly consistent (-3.33 to -3.87 x 10(-4) cm2 V(-1) s(-1)), except for the OTAB/SDS vesicles (-1.68). This resulted in elution ranges that were slightly to significantly larger than that observed for SDS (3.12): 3.85 (POPC/PS), 8.6 (CTAB/SOS), 10.1 (AOT), 15.2 (OTAB/SDS). Significant differences were also noted in the efficiency (using propiophenone) and hydrophobic selectivity; the plate counts were lower with the OTAB/SDS and POPC/PS vesicles than the other pseudostationary phases (< or = 75,000/m vs. > 105,000/m), and the methylene selectivity was considerably higher with the CTAB/SOS and OTAB/SDS vesicles compared to the others (ca. 3.10 vs. < or = 2.6). In terms of shape selectivity, only the CTAB/SOS vesicles were able to separate all three positional isomers of nitrotoluene with near-baseline resolution. Finally, through LSER analysis, it was determined that the cohesiveness and hydrogen bond acidity of these pseudostationary phases have the greatest effect on solute retention and selectivity.  相似文献   

12.
We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface. In contrast, the spreading of vesicles on micrometer scale colloidal crystals results in the formation of bilayers wrapping individual colloidal beads. We show that simple UV photolithography of colloidal crystals produces binary patterns of crystal wettabilities, photonic stopbands, and corresponding patterns of lipid mono- and bilayer morphologies. We envisage that these approaches will be exploitable for the development of optical transduction assays and microarrays for many membrane-mediated processes, including transport and receptor-ligand interactions.  相似文献   

13.
This article describes the fluorescence microscopy and imaging ellipsometry-based characterization of supported phospholipid bilayer formation on elastomeric substrates and its application in microcontact printing of spatially patterned phospholipid bilayers. Elastomeric stamps, displaying a uniformly spaced array of square wells (20, 50, and 100 mum linear dimensions), are prepared using poly(dimethyl)siloxane from photolithographically derived silicon masters. Exposing elastomeric stamps, following UV/ozone-induced oxidation, to a solution of small unilamellar phospholipid vesicles results in the formation of a 2D contiguous, fluid phospholipid bilayers. The bilayer covers both the elevated and depressed regions of the stamp and exhibits a lateral connectivity allowing molecular transport across the topographic boundaries. Applications of these bilayer-coated elastomeric stamps in microcontact printing of lipid bilayers reveal a fluid-tearing process wherein the bilayer in contact regions selectively transfers with 75-90% efficiency, leaving behind unperturbed patches in the depressed regions of the stamp. Next, using cholera-toxin binding fluid POPC bilayers that have been asymmetrically doped with ganglioside Gm1 ligand in the outer leaflets, we examine whether the microcontact transfer of bilayers results in the inversion of the lipid leaflets. Our results suggest a complex transfer process involving at least partial bilayer reorganization and molecular re-equilibration during (or upon) substrate transfer. Taken together, the study sheds light on the structuring of lipid inks on PDMS elastomers and provides clues regarding the mechanism of bilayer transfer. It further highlights some important differences in stamping fluid bilayers from the more routine applications of stamping in the creation of patterned self-assembled monolayers.  相似文献   

14.
The nature of the cholesterol/glycolipid interaction in rafts being poorly understood, the interaction of cholesterol with the GM3 ganglioside has been studied by surface pressure measurements and fluorescence microscopy. Results have been compared to those obtained with sphingomyelin (SM)-cholesterol and palmitoyl-oleoyl-phosphatidylcholine (POPC)–cholesterol monolayers. The analysis of (πA) isotherms of mixed monolayers show a condensing effect of cholesterol on GM3 molecules, in the same range than the effect observed with POPC and higher than the effect on SM. This is likely due to the similar state of GM3 and POPC, since both molecules are in liquid expanded phases in our experimental conditions. The study of the cholesterol desorption induced by β-cyclodextrin suggests also that the GM3–cholesterol interaction is rather weak as in the case of POPC–cholesterol interaction, and clearly lower than SM–cholesterol one. This lack of interaction is discussed in terms of nature of lipid chains and molecular shape, and suggests that no hydrogen bond is formed between GM3 and cholesterol polar heads. Fluorescence microscopy performed on mixed GM3–cholesterol monolayers shows the presence, at surface pressure higher than 10 mN/m, of particular blurring patterns without defined boundary, which could be due to a partial solubilization in one phase of different phases observed at lower surface pressure, whereas SM–cholesterol and POPC–cholesterol monolayers are homogeneous at the lateral resolution of our microscopy set-up.  相似文献   

15.
Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure. Since it was anticipated that losartan reaches the receptor site via membrane diffusion, the impact of losartan on model membranes has been investigated by small angle X-ray scattering. For this purpose 2-20 mol% losartan was incorporated into dimyristoyl-phosphatidylcholine (DMPC) and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers and into their binary mixtures with cholesterol in the concentration range of 0 to 40 mol%. Effects of losartan on single component bilayers are alike. Partitioning of losartan into the membranes confers a negative charge to the lipid bilayers that causes the formation of unilamellar vesicles and a reduction of the bilayer thickness by 3-4%. Analysis of the structural data resulted in an estimate for the partial area of losartan, A(Los) ≈ 40 ?(2). In the presence of cholesterol, differences between the effects of losartan on POPC and DMPC are striking. Membrane condensation by cholesterol is retarded by losartan in POPC. This contrasts with DMPC, where an increase of the cholesterol content shifts the partitioning equilibrium of losartan towards the aqueous phase, such that losartan gets depleted from the bilayers from 20 mol% cholesterol onwards. This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan's action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts.  相似文献   

16.
Different types of nonionic vesicles were prepared from commercial Span 80 (also called sorbitan monooleate), as an inexpensive, biocompatible alternative to conventional phospholipid-based vesicles (liposomes). The vesicles were characterized by different techniques and comparison was made with vesicles formed from POPC (1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine) or DOPC (1,2-dioleoyl- sn-glycero-3-phosphocholine). Dynamic light scattering measurements, electron microscopy analyses, and two types of fusion assays indicate that Span 80 vesicles are stable for at least 7 days at 4 or 25 degrees C, while storage at 42 degrees C causes irreversible vesicle fusion. This indicates that Span 80 vesicles are thermoresponsive with vesicle fusion occurring at elevated temperature. This property may be related to headgroup dehydration and is certainly not directly linked to the phase transition temperature (Tm) of the vesicles, since the Tm is below -30 degrees C, as determined by differential scanning calorimetry (DSC). The measured Tm value for Span 80 vesicles is lower than in the case of DOPC or POPC, correlating with a higher fluidity of Span 80 vesicles as compared to POPC or DOPC vesicles, as determined with DPH (1,6-diphenyl-1,3,5-hexatriene) as fluorescent membrane probe. High fluidity correlates with increased leakage of entrapped water-soluble dye molecules. Addition of cholesterol and soybean phosphatidylcholine lowers the extent of leakage, allowing a tuning of the bilayer permeability.  相似文献   

17.
Cholesterol/phospholipid interactions in hybrid bilayer membranes   总被引:1,自引:0,他引:1  
The interactions between cholesterol and saturated phospholipids in hybrid bilayer membranes (HBMs) were investigated using the interface-sensitive technique of vibrational sum frequency spectroscopy (VSFS). The unique sensitivity of VSFS to order/disorder transitions of the lipid acyl chains was used to determine the main gel to liquid crystal phase transition temperature, Tm, for HBMs of binary cholesterol/phospholipid mixtures on octadecanethiolate self-assembled monolayers. The phase transition temperature and the breadth of the transition were shown to increase with cholesterol content, and the phase boundaries observed in the cholesterol/phospholipid HBMs were comparable to the published phase diagrams of binary cholesterol/phospholipid vesicles. A thermodynamic assessment of the cooperative units of the HBM phase transitions revealed the presence of <10 nm diameter domains that were independent of the cholesterol composition.  相似文献   

18.
The effect of edelfosine (1- O-octadecyl-2- O-methyl-rac-glycero-3-phosphocholine or ET-18-OCH3) on model membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine/sphingomyelin/cholesterol (POPC/SM/cholesterol) was studied by several physical techniques. The sample POPC/SM (1:1 molar ratio) showed a broad phase transition as seen by DSC, X-ray diffraction, and 2H NMR. The addition of edelfosine to this sample produced isotropic structures at temperatures above the phase transition, as seen by 2H NMR and by 31P NMR. When cholesterol was added to give a POPC/SM/cholesterol (at a molar ratio 1:1:1), no transition was observed by DSC nor X-ray diffraction, and 2H NMR indicated the presence of a liquid ordered phase. The addition of 10 mol % edelfosine increased the thickness of the membrane as seen by X-ray diffraction and led to bigger differences in the values of the molecular order of the membrane detected at high and low temperatures, as detected through the M 1 first spectral moment from 2H NMR. These differences were even greater when 20 mol % edelfosine was added, and a transition was now clearly visible by DSC. In addition, a gel phase was clearly indicated by X-ray diffraction at low temperatures. The same technique pointed to greater membrane thickness in this mixture and to the appearance of a second membrane structure, indicating the formation of two separated phases in the presence of edelfosine. All of these data strongly suggest that edelfosine associating with cholesterol alter the phase status present in a POPC/SM/cholesterol (1:1:1 molar ratio) mixture, which is reputed to be a model of a raft structure. However, cell experiments showed that edelfosine colocalizes in vivo with rafts and that it may reach concentrations higher than 20 mol % of total lipid, indicating that the concentrations used in the biophysical experiments were within what can be expected in a cell membrane. The conclusion is that molecular ways of action of edelfosine in cells may involve the modification of the structure of rafts.  相似文献   

19.
We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.  相似文献   

20.
Photopolymerizable phospholipid DC(8,9)PC (1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) exhibits unique assembly characteristics in the lipid bilayer. Because of the presence of the diacetylene groups, DC(8,9)PC undergoes polymerization upon UV (254 nm) exposure and assumes chromogenic properties. DC(8,9)PC photopolymerization in gel-phase matrix lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monitored by UV-vis absorption spectroscopy occurred within 2 min after UV treatment, whereas no spectral shifts were observed when DC(8,9)PC was incorporated into liquid-phase matrix 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Liquid chromatography-tandem mass spectrometry analysis showed a decrease in the amount of DC(8,9)PC monomer in both DPPC and POPC environments without any change in the matrix lipids in UV-treated samples. Molecular dynamics (MD) simulations of DPPC/DC(8,9)PC and POPC/DC(8,9)PC bilayers indicate that the DC(8,9)PC molecules adjust to the thickness of the matrix lipid bilayer. Furthermore, the motions of DC(8,9)PC in the gel-phase bilayer are more restricted than in the fluid bilayer. The restricted motional flexibility of DC(8,9)PC (in the gel phase) enables the reactive diacetylenes in individual molecules to align and undergo polymerization, whereas the unrestricted motions in the fluid bilayer restrict polymerization because of the lack of appropriate alignment of the DC(8,9)PC fatty acyl chains. Fluorescence microscopy data indicates the homogeneous distribution of lipid probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (N-Rh-PE) in POPC/DC(8,9)PC monolayers but domain formation in DPPC/DC(8,9)PC monolayers. These results show that the DC(8,9)PC molecules cluster and assume the preferred conformation in the gel-phase matrix for the UV-triggered polymerization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号