首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
GeTe(1-x)-Sb2Te3(x) sputtered amorphous film was crystallized into a simple NaCl-type structure through instantaneous laser irradiation over a wide composition range from x = 0 to at least 2/3. When the ratio of Sb2Te3 increases, a vacancy is generated at every Na site for two Sb atoms. The fraction of vacancies, v(x), changes according to x/(1 + 2x), and the cubic root unit cell volume varies with a strong correlation to v(x). Through these created vacancies, valence electrons provided by adjacent Ge/Sb and Te atoms remain constant regardless of the composition, ensuring that these electrons occupy predominantly the bonding molecular orbitals. This results in crystal chemical stability, with the closed shell p-p bondings in the valence electrons arranging the crystal's atomic configuration into an NaCl-type structure.  相似文献   

2.
Four molybdotellurates containing the 1-methylimidazolium, 2-methylimidazolium and 4-methylimidazolium cations have been synthesized and their structures: [2-H2-methyl-imz]6[TeMo6O24 ]·2H2O (2), [2-H2-methyl-imz]6[TeMo6O24 ]·2(2-H-methyl-imz)·2H2O (3) and [4-H2-methyl-imz]6[TeMo6O24 ]·Te(OH)6 (4) determined by X-ray diffraction methods. The protonated organic bases are bonded to the anion in the crystal by hydrogen bonds, except for (4) where the crystal structure consists of discrete [TeMo6O24]6– anions and Te(OH)6 units, both bonded to 4-methylimidazolium cations by hydrogen bonds. The hydrogen bonds were studied as a function of the unit charge of the oxygen atoms of the [TeMo6O24]6– anion. Distortions of the central octahedron of polyanions of formula [XMo6O24]n– (X=AlIII, MoVI, TeVI and IVII), and polyanions of formula [H6YMo6O24]n–, (Y=CoII, CuII, ZnII, CrIII, RhIII and PtIV) are discussed. 95Mo n.m.r spectroscopy of compounds [1-H2-methyl-imz]6[Te-Mo6O24]·Te(OH)6 (1), (2) and (4) indicates the existence of an octahedral oxygen atom arrangement around the molybdenum and a pH variation experiment, carried out with compound (1), confirmed the existence of hydrolytic processes of the compounds in aqueous solution. 125Te n.m.r. studies permitted identification of the Te atom in the [TeMo6O24]6– kernel in all compounds; the presence of two different Te(OH)6 moieties in compounds (1) and (4) was also detected. The similarity between the spectra of both compounds could indicate that (1) has the same structural arrangement as (4). Finally, the thermal behaviour and the thermal stabilities of the complexes as a function of the organic cation were studied.  相似文献   

3.
Tunneling chemical reactions D + H2 --> DH + H and D + DH --> D2 + H in solid HD-H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within approximately 300 s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)(12-n) --> H(H2)(n-1)(HD)(13-n) or D(H2)n(D2)(12-n) --> H(HD)(H2)(n-1)(D2)(12-n) for 12 > or = n > or = 1. Rate constant for the D + H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5 +/- 0.7) x 10(-3) s(-1) in solid HD-H2 and (1.3+/-0.3) x 10(-2) s(-1) in D2-H2 at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of +/-30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D + DH reaction with one of its nearest-neighboring HD molecules in solid HD-H2 or diffuses to the neighbor of H2 molecules to allow the D + H2 reaction in solid HD-H2 and D2-H2. The former is the main channel in solid HD-H2 below 6 K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6 K. Rate for the reactions in the slow process is independent of temperature below 6 K but increases with the increase in temperature above 6 K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate constant for the D + DH reaction was found to be independent of temperature up to 7 K as well.  相似文献   

4.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

5.
A planar structure of an anion cluster I- x (H2O)6 in a 3D supramolecular complex [Ru(bpy)3]2[I x (H2O)6Fe(CN)6 x H2O] has been determined by single-crystal X-ray analysis. In the supramolecule, the anion cluster I- x (H2O)6, together with the anion [Fe(CN)6 x H2O]2-, acts as a 3D crystal host, and the [Ru(bpy)3]2+ cations, as the guest molecules, occupy the vacancies of the 3D host framework. This is the first crystal example of the anion cluster I- x (H2O)6.  相似文献   

6.
We analyze the bonding in a number of networks of heavy main group elements comprised of finite-length linear chains fused at right angles. Isolated linear chain building blocks may be understood easily by analogy with three-orbital four-electron "hypervalent" bonding picture in such molecules as I(3)(-) and XeF(2). After deriving the appropriate electron-counting rules for such linear units, we proceed in an aufbau to fuse these chains into simple (and not so simple) infinite networks. It is proposed that (a) infinite Sb(3) ribbons of vertex sharing squares are stable for an electron count of 20 electrons per three atoms (i.e., ); (b) sidewise fused Sb double ribbons are stable for an electron count of 38 electrons per six atoms (i.e., ); (c) Sb(4) strips cut from a square lattice are stable at the electron count of 24 electrons per four atoms (i.e., ); (d) Te(6) defect square sheets are stable at the electron count of 40 electrons per six atoms (i.e., ). The electronic structures of the solid-state compounds containing these networks, namely La(12)Mn(2)Sb(30), alpha-ZrSb(2), beta-ZrSb(2), Cs(3)Te(22), and Cs(4)Te(28), are elaborated. We propose preferred electron counts for two hypothetical Sb ribbons derived from the Sb(3) ribbon in La(12)Mn(2)Sb(30). A possibility of geometry distortion modulation by excess charge in lattices comprised of even-membered linear units is suggested.  相似文献   

7.
8.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   

9.
The reaction in water of the N-benzyliminodiacetate-copper(II) chelate ([Cu(NBzIDA)]) and the adenine:thymine base pair complex (AdeH:ThyH) with a Cu/NBzIDA/AdeH/ThyH molar ratio of 2:2:1:1 yields [Cu(2)(NBzIDA)(2)(H(2)O)(2)(mu-N7,N9-Ade(N3)H)].3H(2)O and free ThyH. The compound has been studied by thermal, spectral, and X-ray diffraction methods. In the asymmetric dinuclear complex units both Cu(II) atoms exhibit a square pyramidal coordination, where the four closest donors are supplied by NBzIDA in a mer-tridentate conformation and the N7 or N9 donors of AdeH, which is protonated at N3. The mu-N7,N9 bridge represents a new coordination mode for nonsubstituted AdeH, except for some adeninate(1-)-[methylmercury(II)] derivatives studied earlier. The dinuclear complex is stabilized by the Cu-N7 and Cu-N9 bonds and N6-H(exocyclic)...O(carboxyl) and N3-H(heterocyclic)...O(carboxyl) interligand interactions, respectively. The structure of the new compound differs from that of the mononuclear compound [Cu(NBzIDA)(Ade(N9)H)(H(2)O)].H(2)O, in which the unusual Cu-N3(AdeH) bond is stabilized by a N9-H...O(carboxyl) interligand interaction and where alternating benzyl-AdeH intermolecular pi,pi-stacking interactions produce infinite stacked chains. The possibility for ThyH to be involved in the molecular recognition between [Cu(NBzIDA)] and the AdeH:ThyH base pair is proposed.  相似文献   

10.
Gao Q  Wang X  Jacobson AJ 《Inorganic chemistry》2011,50(18):9073-9082
A chiral cluster compound, dipotassium bis(μ-tartrato)diantimony(III), K(2)Sb(2)L(2) (H(4)L = L-tartaric acid), was used as a secondary building unit to react with lanthanide ions. Three series of homochiral coordination compounds were obtained: 0D [La(H(2)L)(H(2)O)(4)](2)[Sb(2)L(2)]·7H(2)O (0D-La), 1D Ln(Sb(2)L(2))(H(2)O)(5)(NO(3))·H(2)O (1D-Ln) (Ln = La-Lu or Y, expect Pm), 2D(I) [(Ln(H(2)O)(5))(2)(Sb(2)L(2))(3)]·5H(2)O (2D(I)-Ln) (Ln = La, Ce, Pr), and 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O (2D(II)-La). Single-crystal X-ray diffraction studies indicated that 0D-La crystallizes in space group P1, and the structure contains isolated Sb(2)L(2)(2-) units located between chains of composition La(H(2)L)(H(2)O)(4). The series of 1D-Ln compounds is isostructural and crystallizes in space group P2(1)2(1)2(1). In the structure, Sb(2)L(2)(2-) units are coordinated to two Ln ions by two out of the four free tartrate oxygen atoms to form a linear chain. To the best of our knowledge, this is the first example of a homochiral structure that can be formed for the whole lanthanide series. In the 2D(I)-Ln structure series, which crystallizes in space group P2(1), the Sb(2)L(2)(2-) units have two distinct coordination modes: one is the same as that found in the 1D structure, while in the other all four free tartrate oxygen atoms are coordinated to four Ln ions in a very distorted tetrahedral arrangement. The connectivity between Sb(2)L(2)(2-) secondary units and LnO(9) polyhedra gives rise to infinite layers. 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O, which crystallizes in space group C2, has a similar network to the 2D(I)-Ln compounds. The trends in lattice parameters, bond lengths, and ionic radii in the 1D-Ln series were analyzed to show the effect of the lanthanide contraction.  相似文献   

11.
<正> (NH4)12[Cu3(H2O)3Sb2W18O66].9H2O,Mr = 5232.06, orthorhombic, space group Pmcn, a=15.423(4), b = 19.307(6), c = 30.275(6) A,V= 9015.0 A3, Z=4,Dc=3.866 g/cm3,u= 247.569 cm-1,R = 0.064 for 2652 observed reflections [I> 3σ(I)]. X-ray analysis shows that the heteropoly anion of the title compound consists of two α-β-SbW9O33 subunits, which are derived from the a-Keggin structure by loss of one W3O13 group constituted by three edge-sharing WO6 octahedra, merged together through the connection with three CuO4(H2O) units with the O atoms shared with the W atoms.  相似文献   

12.
Bie H  Mar A 《Inorganic chemistry》2008,47(15):6763-6770
The isostructural rare-earth titanium antimonides RE 2Ti 11 - x Sb 14 + x ( RE = Sm, Gd, Tb, Yb) have been synthesized by arc-melting reactions of the elements. Single-crystal X-ray diffraction revealed that they adopt a new structure type (Pearson symbol oP54, space group Pnma, Z = 2; a = 15.8865(6)-15.9529(9) A, b = 5.7164(2)-5.7135(3) A, c = 12.9244(5)-12.9442(7) A for RE = Sm-Yb). The structure consists of titanium-centered octahedra (CN6) and pentagonal bipyramids (CN7) connected to form a 3D framework whose cavities are filled with RE atoms. 1D linear skewers of titanium atoms, within face-sharing octahedral chains, and similar skewers of antimony atoms, associated with the titanium-centered pentagonal bipyramids, extend along the b direction. On proceeding from Sm 2Ti 11Sb 14 to Tb 2Ti 10.41(1)Sb 14.59(1) and Yb 2Ti 10.58(1)Sb 14.42(1), antimony atoms are disordered within some of the titanium sites. Resistivity measurements on the samarium and ytterbium members indicated metallic behavior.  相似文献   

13.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

14.
Cao DK  Li YZ  Zheng LM 《Inorganic chemistry》2005,44(9):2984-2985
Direct reaction of hydroxy(2-pyridyl)methylphosphonic acid with zinc sulfate under hydrothermal conditions results in the formation of the novel heptanuclear cluster compound [Zn7{(2-C5H4N)CH(OH)PO3}6 (H2O)6]SO4 x 4H2O (1). The inorganic core of the cluster can be described as a cylindrical drum made up of six Zn atoms bridged by six {CPO3} units that is centered by a seventh Zn atom. Crystal data: monoclinic, C2/c, a = 22.690(2) A, b = 16.675(2) A, c = 18.151(2) A, beta = 93.390(2) degrees.  相似文献   

15.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

16.
The charge-neutral antimonatopolyoxovanadium(IV) cluster [V(IV)16Sb(III)4O42(H2O){V(IV)O(C6H14N2)2}4].10H2O.C6H14N2 was obtained under solvothermal conditions. The central cluster fragment, [V(IV) 16Sb(III)4O42], is a derivative of the [V18O42] archetype and is formed by replacing two VO5 polyhedra by two Sb2O5 units. The {V20Sb4} structure expands the {V16Sb4} motif by the addition of four square-pyramidal, terminal VO(1,2-diaminocyclohexane)2 groups. At low temperatures, the magnetic ground state is characterized by four independent S = 1/2 sites.  相似文献   

17.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

18.
A novel polymeric Pr2Cu3 complex of iminodiacetic acid (H2L1=NH{CH2COOH}2) [Pr2Cu3(L1)6]n , 1, has been synthesized and structurally characterized. The title complex Pr2Cu3O24N6C24H30 (Mr=1258.97) crystallized in trigonal space group Pc1 (No. 165) with a = 13.424(4), c=14.752(6)(); V=2303(1)()3; F(000)=1226; λ(MoKα)=35.2 cm-1; Dc=1.820 g.cm-3; Z=2. The final R and Rw are 0.072 and 0.081 respectively for 1412 reflections with I>3σ(I). In crystal 1, the Pr3+ ion is nine-coordinated by 6 O atoms from three bidentate chelating carboxylate groups and 3 O atoms from three anti-anti bridging carboxylic groups of six L1 ligands; the Cu2+ ion is six-coordinated by 4 O and 2 N atoms from two pentadentate L1 ligands. Each pair of Pr(Ⅲ) atoms is bridged by three L1 ligands, each of which also chelates with one copper(Ⅱ) ion, thus forming a Pr2Cu3 cluster unit. Such cluster units are cross-linked by flexible L1 ligands into a three-dimensional coordination framework.  相似文献   

19.
A novel zinc(H) metal phosphonate compound [Zn(phen)(m-OOCC6H4PO3H)] 1 (phen = phenanthroline) has been synthesized under hydrothermal conditions. Single-crystal X-ray structure analysis reveals that compound 1 belongs to the triclinic system, space group P1 with a = 9.3356(19), b = 10.203(2),c = 10.743(2)A,α = 76.3030(70), β= 69.2317(51), y = 84.3833(74)°,V = 929.4(3) ,A3, Z = 2, C2OH15N2O5PZn, Mr = 459.68, Dc = 1.643 g/cm^3,μ= 1.444, mm^-1, F(000) = 468, the final R = 0.0330 and wR = 0.0848. In the structure, the central ion Zn(H) is five-coordinated, linking three O atoms with one from carboxyl and the other two from phosphonyl group. The remained two coordinate sites were occupied by two N atoms from one phen molecule to form the asymmetric unit. Then every two adjacent asymmetric units are bridged by the O atoms from phosphonate group and carboxyl to give rise to a 1D chain along the b axis. These chains are constructed by weak π-π stacking interactions and C-H…π interactions to generate a 3D supramolecular framework.  相似文献   

20.
Using FTIR smog chamber techniques, k(Cl + CF3OCF2CF2H) = (2.70 +/- 0.52) x 10(-16), k(OH + CF3OCF2CF2H) = (2.26 +/- 0.18) x 10(-15), k(Cl + CF3OC(CF3)2H) = (1.58 +/- 0.27) x 10(-18) and k(OH + CF3OC(CF3)2H) = (3.26 +/- 0.95) x 10(-16) cm3 molecule(-1) s(-1) were measured. The atmospheric lifetimes of CF3OCF2CF2H and CF3OC(CF3)2H are estimated to be 27 and 216 years, respectively. Chlorine atom initiated oxidation of CF3OCF2CF2H in 700 Torr of air in the presence of NO(x) gives CF3OC(O)F in a molar yield of 36 +/- 5% and COF2 in a molar yield of 174 +/- 9%, whereas oxidation of CF3OC(CF3)2H gives CF3OC(O)CF3 and COF2 in molar yields that are indistinguishable from 100%. Quantitative infrared spectra were recorded and used to estimate global warming potentials of 3690 and 8230 (100 year time horizon, relative to CO2) for CF3OCF2CF2H and CF3OC(CF3)2H, respectively. All experiments were performed in 700 Torr of N2/O2 diluent at 296 +/- 2 K. An empirical relationship can be used to estimate the preexponential factor, which can be combined with k(298 K) to give the temperature dependence of reactions of OH radicals with organic compounds proceeding via H-atom abstraction: log(A/n) = (0.239 +/- 0.027) log(k(OH)/n) - (8.69 +/- 0.372), k(OH) is the rate constant at 298 K and n is the number of H atoms. The rates of H-atom abstraction by OH radicals and Cl atoms at 298 K from organic compounds are related by the expression log(k(OH)) = (0.412 +/- 0.049) log(k(Cl)) - (8.16 +/- 0.72). The utility of these expressions and the atmospheric chemistry of the title hydrofluoroethers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号