首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
Sn-Ag-Cu无铅焊料性能研究   总被引:2,自引:0,他引:2  
环保和微电子器件高度集成化的发展驱动了高性能无铅焊料的研究和开发,Sn—Ag-Cu系无铅焊料由于具有良好的焊接性能和使用性能,已逐渐成为一种通用电子无铅焊料。文章通过实验的方法,研究了8种不同配比的Sn—Ag—Cu焊料中银、铜含量对合金性能(包括熔点、润湿性和剪切强度)的影响,并对焊料的显微组织进行对比与分析,得出低银焊料的可靠性比高银焊料好,同时Sn-2.9Ag—1.2Cu的合金具有较低的熔点且铺展性好,为确定综合性能最佳的该系焊料合金提供了依据。  相似文献   

2.
La对Sn-Ag-Cu无铅钎料组织与性能的影响   总被引:1,自引:0,他引:1  
研究了微量稀土La对Sn-3.0Ag-0.5Cu无铅钎料显微组织、力学性能、断口形貌、润湿性能和熔点的影响.结果表明:La的质量分数为0.1%可使钎料合金晶粒细化,并显著提高钎料合金力学性能和润湿性能;添加La的质量分数为0.4%将形成粗大LaSn3初生枝晶相,降低力学性能和润湿性能;微量La使钎料合金的熔点轻微增加.  相似文献   

3.
Sn-Cu、Sn-Ag-Cu系无铅钎料的钎焊特性研究   总被引:17,自引:5,他引:12  
制备了Sn-0.7Cu、Sn-3.5Ag-0.6Cu钎料,用润湿平衡法测量了钎料对铜的润湿曲线,研究了温度、钎剂活性、钎焊时间对润湿行为的影响,并与Sn-37Pb钎料进行了比较。结果表明:升高温度能显著改善无铅钎料对铜的钎焊性。当温度<270℃时,Sn-0.7Cu的钎焊性明显低于Sn-3.5Ag-0.6Cu钎料;而当温度≥270℃时,两种钎料对铜都会显示较好的润湿性,而Sn-0.7Cu略优于Sn-3.5Ag-0.6Cu钎料。提高钎剂活性能显著增强钎料对铜的润湿性,其卤素离子的最佳质量分数均为0.4%左右。随着浸渍时间的延长,熔融钎料与铜的界面间产生失润现象。无铅钎料的熔点和表面张力较高,是钎焊性较差的根本原因。  相似文献   

4.
Sn-Sb-Cu(Bi)系无铅钎料的研究   总被引:1,自引:0,他引:1  
本文研究了Sn-Sb-Cu(Bi)系无铅钎料的润湿性、显微组织以及熔化特性,对Sb、Cu、Bi等元素在Sn基钎料中的作用进行了阐述,发现了几种有应用潜力的合金,有望取代现有广泛使用的SnAg(Cu)系钎料.  相似文献   

5.
颗粒增强Sn-Ag基无铅复合钎料显微组织与性能   总被引:2,自引:0,他引:2  
通过外加法向Sn-3.5Ag焊料中加入体积分数为10%的微米级Cu、Ni颗粒制备了无铅复合钎料,对钎料的显微组织、拉剪及润湿性能进行了研究。结果表明,颗粒周围以及基板界面处的显微组织中生成了金属间化合物,其形态及大小因加入颗粒而不同。颗粒的加入提高了钎料钎焊接头的剪切强度,其中Cu颗粒增强的接头的剪切强度提高了33%,Ni颗粒的提高了20%。两种复合钎料的铺展面积均下降了约15%,其中Cu颗粒增强复合钎料润湿角由11°增加到18°。  相似文献   

6.
涂文彬  周光雄 《电子科技》2013,26(10):91-94
研制开发熔点在260 ℃以上的高温无铅钎料来代替传统的高铅钎料运用于电子封装一直是钎焊领域的一大难题。熔点约为272 ℃的Bi-2.6 Ag-5 Sb钎料合金因润湿性和焊接可靠性不良在运用上受到限制。文中通过在Bi-2.6 Ag-5 Sb钎料合金中添加微量元素Cu来改善B-i2.6 Ag-5 Sb合金的润湿性及焊接可靠性。研究结果表明,Cu含量对BiAgSbCu系钎料合金熔点影响较小,当Cu含量为2 %时,润湿性及焊接可靠性最佳。  相似文献   

7.
电迁移问题作为影响焊点可靠性的关键问题之一,容易导致焊点出现裂纹、丘凸和空洞等焊接缺陷.其失效机制有电流拥挤效应、焦耳热效应、极化效应和金属间化合物失效等.聚焦Sn-Ag-Cu系无铅钎料焊点的电迁移问题,介绍了这一领域电迁移的失效机制、影响因素和防止措施的研究现状,并展望了今后的研究发展趋势.  相似文献   

8.
《电子与封装》2016,(6):1-9
综合分析了Sn-Cu-Ni系无铅钎料的国内外研究现状,概述了Sn-Cu-Ni系无铅钎料的润湿性、微观组织、界面反应、力学性能、焊点可靠性、物理性能等性能特点。从钎焊工艺、添加微量元素等方面阐述了Sn-Cu-Ni系钎料各项性能的影响因素,并对Sn-Cu-Ni系钎料的应用前景和研究方向进行了展望。  相似文献   

9.
向Zn20Sn高温无铅钎料中添加微量铈镧混合稀土(RE),研究了RE的添加量对该钎料合金显微组织及性能的影响。结果表明,添加微量RE的合金显微组织中出现含RE的金属间化合物(IMC)。随着RE的添加,形状各异的IMC的数量显著增加。RE质量分数为0.5%~1.0%的合金的固相线温度不变,而液相线温度略有降低。当RE质量分数为0.5%时,钎料在Cu基板上的铺展面积最大,比Zn20Sn钎料提高了57.6%。但随着RE的继续添加,钎料的润湿性降低。当RE质量分数超过0.1%时,钎料的显微硬度和电阻率随着RE含量的增加而增大。综合考虑,合适的RE添加量为质量分数0.5%。  相似文献   

10.
以Sn2.5Ag0.7Cu为基础,添加微量的稀土(RE)r(Ce︰La)为4︰1,研究了钎焊接头的显微组织与力学性能。结果表明:添加微量的RE后,钎料与Cu试样间的界面层厚度明显减小,且界面处的组织更加平滑,相应地其剪切强度随微量RE的添加而增大,并在RE含量(质量分数)为0.1%时达到最大值36MPa。  相似文献   

11.
采用悬滴法测量了3种无铅钎料合金(Sn-3.0Ag-0.5Cu、Sn-0.7Cu与Sn-9.0Zn)在260℃时的表面张力,分别为525.5,534.8和595.4 mN/m;同时采用座滴法测量了其在260℃熔融状态下与Cu基板的接触角,分别为24.5°、28.0°和102.5°,并且与传统Sn-37.0Pb钎料进行了比较研究。结果表明,无铅钎料合金的表面张力与接触角均大于Sn-37.0Pb钎料。结合Young-Dupre公式讨论了钎料合金表面张力与其润湿性能的相关性,认为Sn基钎料合金在Cu基板上的润湿性能主要取决于其表面张力。  相似文献   

12.
概要地评述了无铅焊料中低银含量的锡-银-铜(SnAgCu)体系的发展方向。由于高银含量的锡-银-铜(SnAgCu)体系存在着成本高和耐跌落(摔)性差的问题,它将被低银含量的锡-银-铜(SnAgCu)体系所取代。在低银含量的锡-银-铜(SnAgCu)体系中加入某些微量添加剂可以达到锡-铅焊料的性能水平。  相似文献   

13.
Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders   总被引:2,自引:0,他引:2  
Fatigue crack-growth behavior and mechanical properties of Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders have been investigated at room temperature (20°C). The tensile strength and hardness of the solders increased with increasing Bi content. However, the yield strengths of Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders were nearly similar, but the 3Bi solder exhibited the lowest ductility. Fatigue crack-growth behavior of the solders was dominantly cycle dependent in the range of stress ratios from 0.1–0.7 at a frequency of 10 Hz, except for the Sn-3Ag-0.5Cu solder tested at a stress ratio of 0.7. Mixed intergranular/transgranular crack propagation was observed for the Sn-3Ag-0.5Cu solder tested at the stress ratio of 0.7, indicating the importance of creep in crack growth. The Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders had higher resistance to time-dependent crack growth, resulting from the strengthening effect of the Bi constituent. It appears that the addition of Bi above a certain concentration is harmful to the mechanical properties of Sn-3Ag-0.5Cu.  相似文献   

14.
Solder joints used in electronic applications undergo reflow operations. Such operations can affect the solderability, interface intermetallic layer formation and the resultant solder joint microstructure. These in turn can affect the overall mechanical behavior of such joints. In this study the effects of reflow on solderability and mechanical properties were studied. Nanoindentation testing (NIT) was used to obtain mechanical properties from the non-reflow (as-melted) and multiple reflowed solder materials. These studies were carried out with eutectic Sn-3.5Ag solders, with or without mechanically added Cu or Ag reinforcements, using Cu substrates. Microstructural analysis was carried out on solder joints made with the same solders using copper substrate.  相似文献   

15.
Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni   总被引:2,自引:0,他引:2  
The reaction between the Sn-Ag-Cu solders and Ni at 250°C for 10 min and 25 h was studied. Nine different Sn-Ag-Cu solders, with the Ag concentration fixed at 3.9 wt.% and Cu concentrations varied between 0.0–3.0 wt.%, were used. When the reaction time was 10 min, the reactions strongly depended on the Cu concentration. At low-Cu concentrations (≦0.2 wt.%), only a continuous (Ni1−xCux)3Sn4 layer formed at the interface. When the Cu concentration increased to 0.4 wt.%, a continuous (Ni1−xCux)3Sn4 layer and a small amount of discontinuous (Cu1−yNiy)6Sn5 particles formed at the interface. When the Cu concentration increased to 0.5 wt.%, the amount of (Cu1−yNiy)6Sn5 increased and (Cu1−yNi6)6Sn5 became a continuous layer. Beneath this (Cu1−yNiy)6Sn5 layer was a very thin but continuous layer of (Ni1−xCux)3Sn4. At higher Cu concentrations (0.6–3.0 wt.%), (Ni1−xCux)3Sn4 disappeared, and only (Cu1−yNiy)6Sn5 was present. The reactions at 25 h also depended strongly on the Cu concentration, proving that the strong concentration dependence was not a transient phenomenon limited to a short reaction time. The findings of this study were rationalized using the Cu-Ni-Sn isotherm. This study shows that precise control over the Cu concentration in solders is needed to produce consistent results.  相似文献   

16.
Microstructure and mechanical properties were investigated for ten systems of lead-free solders compared with the eutectic Sn-Pb solder. Mechanical properties including elastic, plastic, and creep deformations were predicted by indentation testing. This method was established based on the elastic-plastic-creep finite-element method (FEM). The predicted mechanical properties were obtained for the temperatures ranging between −20°C and 160°C.  相似文献   

17.
Intermetallic growth between Pd and the lead-free solders Sn-Ag and Sn-Ag-Cu has been studied. Diffusion couples were prepared by reflowing the solders on Pd and then aging the couples at 156°C, 175°C, 195°C, and 210°C. At the higher temperatures of 175°C, 195°C, and 210°C, PdSn4 made up most of the layer that grew between the solders and the Pd, although small regions of second phases were always found in the PdSn4 matrix, and it was sometimes possible to identify discontinuous regions of PdSn3 next to the Pd. The thickness of the intermetallic layer increased with the square root of time, consistent with diffusion-controlled growth. In couples annealed at 156°C, the morphology of the PdSn3 phase and growth kinetics differed depending on the composition of the solder.  相似文献   

18.
The effects of minimal rare earth (RE) element additions on the microstructure of Sn-Ag-Cu solder joint, especially the intermetallic compounds (IMCs), were investigated. The range of RE content in Sn-Ag-Cu alloys varied from 0 wt.% to 0.25 wt.%. Experimental results showed that IMCs could be dramatically repressed with the appropriate addition of RE, resulting in a fine microstructure. However, there existed an effective range for the RE addition. The best RE content was found to be 0.1 wt.% in the current study. In addition to the typical morphology of Ag3Sn and Cu6Sn5 IMCs, other types of IMCs that have irregular morphology and uncertain constituents were also observed. The IMCs with large plate shape mainly contained Ag and Sn, but the content of Ag was much lower than that of Ag3Sn. The cross sections of Cu6Sn5 IMCs whiskers showed various morphologies. Furthermore, some eutectic-like structures, including lamellar-, rod-, and needle-like phases, were observed. The morphology of eutectic-like structure was related to the RE content in solder alloys. When the content of RE is 0.1 wt.%, the needle-like phase was dominant, while the lamellar structure prevailed when the RE content was 0.05 wt.% or 0.25 wt.%. It is suggested that the morphology change of the eutectic-like structure directly affects the creep properties of the solder joint.  相似文献   

19.
Slow cooling (1–3°C/sec) of Sn-Ag-Cu and Sn-Ag-Cu-X (X = Fe, Co) solder-joint specimens, made by hand soldering, simulated reflow in a surface-mount assembly to achieve similar as-solidified joint microstructures for realistic shear-strength testing, using Sn-3.5Ag (wt.%) as a baseline. Consistent with predictions from a recent Sn-Ag-Cu ternary phase-diagram study, either Sn dendrites, Ag3Sn primary phase, or Cu6Sn5 primary phase were formed during solidification of joint samples made from the selected near-eutectic Sn-Ag-Cu alloys. Minor substitution of Co for Cu in Sn-3.7Ag-0.9Cu refined the joint-matrix microstructure by an apparent catalysis effect on the Cu6Sn5 phase, whereas Fe substitution promoted extreme refinement of the Sn-dendritic phase. Ambient-temperature shear strength was reduced by Sn dendrites in the joint microstructure, especially coarse dendrites in solute poor Sn-Ag-Cu, e.g., Sn-3.0Ag-0.5Cu, while Sn-3.7Ag-0.9Cu with Co and Fe additions have increased shear strength. At elevated (150°C) temperature, no significant difference exists between the maximum shear-strength values of all of the alloys studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号