首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homoleptic aluminum thiolate complex [Al(mu-S-t-Bu)(S-t-Bu)(2)](2) was prepared by reacting AlBr(3) with NaS-t-Bu while the analogous 2-propanethiolate complex [Al(mu-S-i-Pr)(S-i-Pr)(2)](2) was synthesized by reacting AlH(3)(OEt(2)) with i-PrSH. In the solid state, the dimers have tetrahedral Al atoms and anti-Al(mu-SR)(2)Al four-member rings. The attempted synthesis of [Al(mu-S-t-Bu)(S-t-Bu)(2)](2) by reacting Al(N-i-Pr(2))(3) with t-BuSH in THF solvent yielded the thermally stable THF adduct Al(S-t-Bu)(3)(THF). The same reaction in diethyl ether solvent produced a mixture of [Al(mu-mgr;-S-t-Bu)(S-t-Bu)(2)](2) and the salt [i-Pr(2)NH(2)][Al(S-t-Bu)(4)]. In the solid-state structure of the salt, the anion [Al(S-t-Bu)(4)](-) has a distorted tetrahedral geometry. Reactions of [Al(NMe(2))(3)](2) and AlH(3)(NMe(2)Et) with the alkanethiols yielded stable amine adducts Al(SR)(3)(R'NMe(2)) (R = i-Pr or t-Bu; R' = H or Et). The ligand adducts Al(S-i-Pr)(3)(HNMe(2)) and Al(S-t-Bu)(3)(THF) have distorted trigonal pyramidal geometries in the solid state. Three of the new compounds, [Al(mu-S-i-Pr)(S-i-Pr)(2)](2) and Al(SR)(3)(HNMe(2)) (R = i-Pr or t-Bu), are viable precursor candidates for the chemical vapor deposition of aluminum sulfide films because they are thermally stable, volatile liquids at moderate temperatures.  相似文献   

2.
Reactions of aluminum metal with 3,6-di-tert-butyl-o-benzoquinone (3,6-Q) in various solvents gave aluminum tris-o-semiquinolate and catecholate. The metal catecholate underwent partial hydrolysis in the presence of water. The dimeric complex [(Cat)Al(OH)Bipy]2 × 4C2H4Cl2 (Cat is the 3,6-Q dianion and Bipy is 2,2-bipyridyne) with bridging OH groups was isolated and characterized by X-ray diffraction. A reaction of aluminum with o-quinone in the presence of molecular iodine yielded the dimeric catecholate iodide [(Cat)2Al(Et2O)2]AlI2. The structure of the latter was confirmed by X-ray diffraction. An aluminum catecholato-o-semiquinolate complex was obtained by an exchange reaction between [(Cat)2Al(Et2O)2]AlI2 and thallium o-semiquinolate.  相似文献   

3.
4.
5.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

6.
The ketiminate complex AlCl[OC(Me)CHC(Me)N(p-C6H4F)]2 (4) has been prepared from the β-aminoenone, OC(Me)CHC(Me)N(H)(p-C6H4F) (3) by lithiation of 3 with n-BuLi, followed by reaction with AlCl3 and by the reaction of 3 with Me2AlCl. A second compound, [AlCl2{OC(Me)CHC(Me)N(H)(p-C6H4F)}4][AlCl4] (5), was also isolated from the AlCl3 reaction. The structures of 4 and 5 were determined by X-ray diffraction analysis.  相似文献   

7.
8.
The reaction of LLi, (L = [RNC(Me)CHC(Me) = O] (R = C2H4NEt2)), with AlCl3 at −78 °C forms the mono-ketiminate product, LAlCl2, 1, while the same reaction at 0 °C affords the bis-ketiminate complex, [{(LH)2AlCl}(Cl2)], 2, Reduction of 1 with Lio, Ko or Mgo yielded an unusual dimeric aluminum(III) species, [L′AlCl]2, 3, where C-C coupling of the ligand backbone is observed.  相似文献   

9.
10.
The reactions of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-BIAN, 1) with tri-iso-butylaluminum, triethylgallium or trimethylindium give the novel amido-imine complexes (Bui—dpp-BIAN)AlBui 2 (4), (Et—dpp-BIAN)GaEt2 (5), and (Me—dpp-BIAN)InMe2 (6), respectively. The reaction of (dpp-BIAN)AlI(Et2O) (7) with allyl bromide affords analogous chiral amido-imine derivative (All—dpp-BIAN)AlBrI (8). Hydrolysis of 8 affords the amino-imino compound (All—dpp-BIAN)H (9). The new compounds 46, 8, and 9 have been characterized by 1H NMR and IR spectroscopy. The molecular structures of 5, 6, and 9 were determined by single crystal X-ray analysis.  相似文献   

11.
Aluminum(III) complexes of three curcuminoid analogues [1,7-diphenyl-1,6-heptadiene-3,5-dione, HL1; 1,7-bis(2-hydroxyphenyl)-1,6-heptadiene-3,5-dione, HL2; and 1,7-bis(4-ethoxyphenyl)-1,6-heptadiene-3,5-dione, HL3] of [AlL3] stoichiometry were synthesized and characterized by UV, IR, 1H NMR, and mass spectral data. The compounds were investigated for cytotoxic and antitumor activities. The aluminum chelates are remarkably active compared to free curcuminoid analogues. The aluminum complex of HL2 with hydroxyl in the phenyl ring was most active towards Ehrlich ascites carcinoma cells (concentration needed for 50% inhibition of 5?μg/mL) and cultured L929 cells (1?μg/mL produced 60?+?3% cell death). Increase in lifespan and reduction of solid tumor volume in mice were also largest for the aluminum complex of HL2. The study reveals that the antitumor activities of curcuminoids are more enhanced by complexation with aluminum than with transition metal ions.  相似文献   

12.
Zhu H  Chen EY 《Inorganic chemistry》2007,46(4):1481-1487
The synthesis and structural elucidations of novel boron and aluminum complexes incorporating the tripodal triamido [N3]3- ligand framework that is hypothesized to promote the preorganized pyramidal geometry for high Lewis acidity are reported. Salt metathesis between the in situ-generated trianionic lithium complexes of the tripodal amido ligands with BCl3 leads to boranes HC[SiMe2N(4-MeC6H4)]3B (1) and MeSi[SiMe2N(4-MeC6H4)]3B (2); however, substitution of the N-Ar group with the bulky tBu affords the unexpected non-boron-containing LiCl adduct {[HC(SiMe2NtBu)2(SiMeNtBu)]Li3(Et2O)Cl}2 (3) via apparent elimination of MeBCl2. The products derived from the salt metathesis reaction with AlCl3 are determined by the reaction medium: while the reaction in a hexanes-ether mixture or toluene affords solvated salt adduct HC[SiMe2N(4-MeC6H4)]3Al.ClLi(Et2O)2 (4) or salt adduct HC[SiMe2N(4-MeC6H4)]3Al.ClLi (5), respectively; the addition of a small amount of THF produces a mixture of complexes HC[SiMe2N(4-MeC6H4)]3Al.(THF) (6, major) and HC[SiMe2N(4-MeC6H4)]3Al(OCH=CH2).Li(THF)2 (7, minor). The desired complex 6 can be exclusively formed using HC[SiMe2N(4-MeC6H4)]3Li3.(THF)3 and the hexanes-ether mixture solvent. The molecular structures of complexes 1, 3, 5, 6, and 7 have been elucidated by X-ray diffraction studies. The structure of 1 shows an approximately trigonal pyramidal geometry at B with no significant N-B p-p pi-interactions. The strong salt adduct and solvate formation of the tripodal amido Al complex, as well as its similarity to the strong Lewis acid Al(C6F5)3 in the THF adduct and enolaluminate formation and structure, indicate the desired core structure [N3]Al is indeed highly Lewis acidic.  相似文献   

13.
14.
Reactions of Al(III) and Ga(III) with citric acid in aqueous solutions, yielded the complexes (NH(4))(5)[M(C(6)H(4)O(7))(2)].2H(2)O (M(III) = Al (1), Ga (2)) at alkaline pH, and the complexes (Cat)(4)[M(C(6)H(5)O(7))(C(6)H(4)O(7))].nH(2)O (M(III) = Al (3), Ga (4), Cat. = NH(4)(+), n = 3; M(III) = Al (5), Ga (6), Cat. = K(+), n = 4) at acidic pH. All compounds were characterized by spectroscopic (FT-IR, (1)H, (13)C, and (27)Al NMR, (13)C-MAS NMR) and X-ray techniques. Complex 1 crystallizes in space group P1, with a = 9.638(5) A, b = 9.715(5) A, c = 7.237(4) A, alpha = 90.96(1) degrees, beta = 105.72(1) degrees, gamma = 119.74(1) degrees, V = 557.1(3) A(3), and Z = 1. Complex 2 crystallizes in space group P1, with a = 9.659(6) A, b = 9.762(7) A, c = 7.258(5) A, alpha = 90.95(2) degrees, beta = 105.86(2) degrees, gamma = 119.28(1) degrees, V = 564.9(7) A(3), and Z = 1. Complex 3 crystallizes in space group I2/a, with a = 19.347(3) A, b = 9.857(1) A, c = 23.412(4) A, beta = 100.549(5) degrees, V = 4389(1) A(3), and Z = 8. Complex 4 crystallizes in space group I2/a, with a = 19.275(1) A, b = 9.9697(6) A, c = 23.476(1) A, beta = 100.694(2) degrees, V = 4432.8(5) A(3), and Z = 8. Complex 5 crystallizes in space group P1, with a = 7.316(1) A, b = 9.454(2) A, c = 9.569(2) A, alpha = 64.218(4) degrees, beta = 69.872(3) degrees, gamma = 69.985(4) degrees, V = 544.9(2) A(3), and Z = 1. Complex 6 crystallizes in space group P1, with a = 7.3242(2) A, b = 9.4363(5) A, c = 9.6435(5) A, alpha = 63.751(2) degrees, beta = 70.091(2) degrees, gamma = 69.941(2) degrees, V = 547.22(4) A(3), and Z = 1. The crystal structures of 1-6 reveal mononuclear octahedral complexes of Al(III) (or Ga(III)) bound to two citrates. Solution NMR, on both 4- and 5- species, reveals rapid intramolecular exchange of the bound and unbound terminal carboxylates. Upon dissolution in water, the complexes, through a complicated reaction cascade, transform to oligonuclear 1:1 species that, in agreement with previous studies, represent the thermodynamically stable state in solution. The data provide, for the first time, structural details of low MW, mononuclear complexes of Al(III) (or Ga(III)) with citrate that are dictated, among other factors, by pH. The properties of 1-6 may provide clues relevant to their biological association with humans.  相似文献   

15.
The synthesis, structures, and reactivity of cationic aluminum complexes containing the N,N'-diisopropylaminotroponiminate ligand ((i)Pr(2)-ATI(-)) are described. The reaction of ((i)Pr(2)-ATI)AlR(2) (1a-e,g,h; R = H (a), Me (b), Et (c), Pr (d), (i)Bu (e), Cy (g), CH(2)Ph (h)) with [Ph(3)C][B(C(6)F(5))(4)] yields ((i)()Pr(2)-ATI)AlR(+) species whose fate depends on the properties of the R ligand. 1a and 1b react with 0.5 equiv of [Ph(3)C][B(C(6)F(5))(4)] to produce dinuclear monocationic complexes [([(i)Pr(2)-ATI] AlR)(2)(mu-R)][(C(6)F(5))(4)] (2a,b). The cation of 2b contains two ((i)()Pr(2)-ATI)AlMe(+) units linked by an almost linear Al-Me-Al bridge; 2a is presumed to have an analogous structure. 2b does not react further with [Ph(3)C][B(C(6)F(5))(4)]. However, 1a reacts with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to afford ((i Pr(2)-ATI)Al(C(6)F(5))(mu-H)(2)B(C(6)F(5))(2) (3) and other products, presumably via C(6)F(5)(-) transfer and ligand redistribution of a [((i)()Pr(2)-ATI)AlH][(C(6)F(5))(4)] intermediate. 1c-e react with 1 equiv of [Ph(3)C][B(C(6)F(5))(4)] to yield stable base-free [((i)Pr(2)-ATI)AlR][B(C(6)F(5))(4)] complexes (4c-e). 4c crystallizes from chlorobenzene as 4c(ClPh).0.5PhCl, which has been characterized by X-ray crystallography. In the solid state the PhCl ligand of 4c(ClPh) is coordinated by a dative PhCl-Al bond and an ATI/Ph pi-stacking interaction. 1g,h react with [Ph(3)C][B(C(6)F(5))(4)] to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5g,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][(BC(6)F(5))(4)] intermediates. 1c,h react with B(C(6)F(5))(3) to yield ((i)Pr(2)-ATI)Al(R)(C(6)F(5)) (5c,h) via C(6)F(5)(-) transfer of [((i)Pr(2)-ATI)AlR][RB(C(6)F(5))(3)] intermediates. The reaction of 4c-e with MeCN or acetone yields [((i)Pr(2)-ATI)Al(R)(L)][B(C(6)F(5))(4)] adducts (L = MeCN (8c-e), acetone (9c-e)), which undergo associative intermolecular L exchange. 9c-e undergo slow beta-H transfer to afford the dinuclear dicationic alkoxide complex [(((i)Pr(2)-ATI)Al(mu-O(i)()Pr))(2)][B(C(6)F(5))(4)](2) (10) and the corresponding olefin. 4c-e catalyze the head-to-tail dimerization of tert-butyl acetylene by an insertion/sigma-bond metathesis mechanism involving [((i)Pr(2)-ATI)Al(C=C(t)Bu)][B(C(6)F(5))(4)] (13) and [((i)Pr(2)-ATI)Al(CH=C((t)()Bu)C=C(t)Bu)][B(C(6)F(5))(4)] (14) intermediates. 13 crystallizes as the dinuclear dicationic complex [([(i Pr(2)-ATI]Al(mu-C=C(t)Bu))(2)][B(C(6)F(5))(4)](2).5PhCl from chlorobenzene. 4e catalyzes the polymerization of propylene oxide and 2a catalyzes the polymerization of methyl methacrylate. 4c,e react with ethylene-d(4) by beta-H transfer to yield [((i)Pr(2)-ATI)AlCD(2)CD(2)H][B(C(6)F(5))(4)] initially. Polyethylene is also produced in these reactions by an unidentified active species.  相似文献   

16.
17.
Possibility of deep purification of lower aluminum alcoholates used to synthesize aluminum oxide by the sol-gel method and pyrolytic technique is analyzed. The influence exerted by the purity of the starting reagents, moisture content, and catalyst on the nature of the process and the purity of the product being obtained was examined.  相似文献   

18.
19.
Shi  Tong  Zheng  Quan-De  Zuo  Wei-Wei  Liu  Shao-Feng  Li  Zhi-Bo 《高分子科学》2018,36(2):149-156
Two types of bifunctional bis(salicylaldimine) ligands (syn-L and anti-L) were designed and synthesized to support bimetallic aluminum complexes.Owing to the rigid anthracene skeleton,syn-L and anti-L successfully locked two Al centers in close proximity (syn-Al2) and far apart (anti-Al2),respectively.The distance between two Al centers in syn-Al2 was defined by X-ray diffraction as 6.665 (A),which is far shorter than that in anti-Al2.In the presence of stoichiometrical BnOH,syn-Al2 and anti-Al2 were both efficient for ring-opening polymerization (ROP) of rac-LA with the former being more active.In the presence of excess BnOH,syn-Al2 showed an efficient and immortal feature,consistent with high conversions,matched Mns,narrow molecular weight distributions and end group fidelity,while anti-Al2 had a much lower activity or even became entirely inactive due to rapid decomposition,indicated by in situ 1H-NMR experiments of A1 complexes with BnOH.  相似文献   

20.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 572–573, March, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号