首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate nuclear magnetic resonance (NMR) parameters of the rhodopsin chromophore in the dark state of the protein and in the early photointermediate bathorhodopsin via first-principles molecular dynamics simulations and NMR chemical shift calculations in a hybrid quantum/classical (QM/MM) framework. NMR parameters are particularly sensitive to structural properties and to the chemical environment, which allows us to address different questions about the retinal chromophore in situ. Our calculations show that both the 13C and the 1H NMR chemical shifts are rather insensitive to the protonation state of Glu181, an ionizable amino acid side chain located in the vicinity of the isomerizing 11-cis bond. Thus, other techniques should be better suited to establish its protonation state. The calculated chemical shifts for bathorhodopsin further support our previously published theoretical structure, which is in very good agreement with more recent X-ray data.  相似文献   

2.
Abstract— Vibrational bands of hypsorhodopsin in the difference Fourier transform infrared spectra were identified as the bands which arose after formation of isorhodopsin by successive irradiations of bovine rhodopsin at 10 K with >500 nm light, and also as the bands disappeared upon conversion to bathorhodopsin by warming. The chromophore bands were assigned by the bands which shifted upon deuterium substitution of the polyene chain of the retinylidene chromophore. The presence of chromophore bands which shift by D2O exchange clearly shows that the Schiff base chromophore of hypsorhodopsin is protonated. The amide I bands and several other protein bands of hypsorhodopsin appeared at the same frequencies as those of bathorhodopsin, but they are different from those of rhodopsin and isorhodopsin. Furthermore, like bathorhodopsin, hypsorhodopsin displays the Cl—H out-of-plane bending mode which is weakly coupled with C12--–H out-of-plane mode. These facts show that hypsorhodopsin has a chromophore conformation and chromophore-opsin interaction more similar to bathorhodopsin than to rhodopsin and isorhodopsin.  相似文献   

3.
By comparing the results from a hybrid quantum mechanics/molecular mechanics method (SORCI+Q//B3LYP/6-31G*:Amber) between vertebrate (bovine) and invertebrate (squid) visual pigments, the mechanism of molecular rearrangements, energy storage, and origin of the bathochromic shift accompanying the transformation of rhodopsin to bathorhodopsin have been evaluated. The analysis reveals that, in the presence of an unrelaxed binding site, bathorhodopsin was found to carry almost 27 kcal/mol energy in both visual pigments and absorb (λ(max)) at 528 nm in bovine and 554 nm in squid. However, when the residues within 4.0 ? radius of the retinal are relaxed during the isomerization event, almost ~16 kcal/mol energy is lost in squid compared to only ~8 kcal/mol in bovine. Loss of a larger amount of energy in squid is attributed to the presence of a flexible binding site compared to a rigid binding site in bovine. Structure of the squid bathorhodopsin is characterized by formation of a direct H-bond between the Schiff base and Asn87.  相似文献   

4.
Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have emerged. In the first model, the PSB is stabilized by Glu181 in the meta I state, while in the most recent proposal, it is stabilized by Glu113 as well as Glu181. We assess these models by conducting a pair of microsecond scale, all-atom molecular dynamics simulations of rhodopsin embedded in a 99-lipid bilayer of SDPC, SDPE, and cholesterol (2:2:1 ratio) varying the starting protonation state of Glu181. Theoretical simulations gave different orientations of retinal for the two counterion switch mechanisms, which were used to simulate experimental 2H NMR spectra for the C5, C9, and C13 methyl groups. Comparison of the simulated 2H NMR spectra with experimental data supports the complex-counterion mechanism. Hence, our results indicate that Glu113 and Glu181 stabilize the retinal PSB in the meta I state prior to activation of rhodopsin.  相似文献   

5.
NANOSECOND LASER PHOTOLYSIS OF RHODOPSIN AND ISORHODOPSIN   总被引:3,自引:0,他引:3  
Kinetic and spectral measurements have been carried out on the primary intermediate in the photolysis of rhodopsin and isorhodopsin, initiated by a 457 nm, 6 ns (FWHM) laser pulse. In rhodopsin the kinetic decay of bathorhodopsin was found to be 140 ± 15 ns at 20°C. The decay of bathorhodopsin to lumirhodopsin has an activation energy of 51 ± 4 kJ/mol (12.2 ± 1 kcal/mol). The decay kinetics of bathorhodopsin were found to be the same for rhodopsin in membrane and detergent solubilized suspensions. The kinetic decay of the batho product in the photolysis of isorhodopsin was found to be the same as rhodopsin.
The corrected transient spectrum 50 ns following excitation in rhodopsin has two peaks near 560 and 440 nm. A peak was also observed in isorhodopsin near 550 nm at 50 ns following excitation but no transient was observed in the blue. The 550 nm peak in isorhodopsin has an intensity similar to that in rhodopsin indicating that the quantum yields for the formation of batho products of rhodopsin and isorhodopsin are similar under the irradiation conditions used here. Transient spectra for rhodopsin and isorhodopsin 1 μs following excitation are also different. In isorhodopsin the corrected transient spectrum has a peak at 500 nm, similar to low temperature steady state irradiation spectra. The 1 μs transient spectrum in rhodopsin is more intense than in isorhodopsin and shows a peak at 475 nm.  相似文献   

6.
Abstract— The visual pigment rhodopsin is the major membrane protein in the rod photoreceptor membrane. Rhodopsin's function is to transduce the light induced isomerization (ll-cis to all-trans) of its internally located retinylidene chromophore into transient expression of signal sites at the surface of the protein. Fourier transform infrared (FTIR) difference spectroscopy has been used to study all of the steps in the photobleaching sequence of rhodopsin. Early protein alterations involving the peptide backbone and aspartic and/or glutamic carboxyl groups were detected which increase upon lumirhodopsin formation and spread to water exposed carboxyl groups by metarhodopsin II. The intensified and frequency shifted hydrogen-out-of-plane vibrations of the chromophore that are present in bathorhodopsin are absent in lumirhodopsin. This indicates that by lumirhodopsin, the chromophore has relaxed relative to its more strained all-frans form in bathorhodopsin. Finally, the transition to metarhodopsin II is found to involve perturbation of the acyl tail region of unsaturated phospholipid molecules possibly in response to small changes in the shape of the rhodopsin.  相似文献   

7.
Resonance Raman multicomponent spectra of bovine rhodopsin, isorhodopsin, and bathorhodopsin are obtained at low temperature. Application of the double beam, 'pump-probe' technique allows an extraction of the rhodopsin and bathorhodopsin spectra in both protonated and deuterated media. Our results show that the Schiff bases of both rhodopsin and bathorhodopsin are fully protonated and the degree of protonation is unaffected by the rhodopsin-bathorhodopsin transformation. Further, the data support the concept or cis-trans isomerization as occurring in this transition. The effect of these results on various models for the primary photochemical event in vision is discussed.  相似文献   

8.
Abstract— a-Isorhodopsin, an artificial visual pigment with a 9- cis -4,5-dehydro-5,6-dihydro(a)retinal chromophore, was photolyzed at low temperatures and absorption difference spectra were collected as the sample was warmed. A bathorhodopsin (Batho)-like intermediate absorbing at ca 495 nm was detected below 55 K, a blue-shifted intermediate (BSI)-like intermediate absorbing at ca 453 nm was observed when the temperature was raised to 60 K and a lumirhodopsin (Lumi)-like intermediate absorbing at ca 470 nm was found when the sample was warmed to 115 K. Photointermediates from this pigment were compared to those of native rhodopsin and 5,6-dihydroisorhodopsin. As in native rho-dopsin, Batho is the first intermediate detected in a-isorhodopsin, though unlike native rhodopsin at low temperatures BSI is observed prior to Lumi formation. a-Isorhodopsin behaves similarly to 5,6-dihydroisorhodopsin, with the same early intermediates observed in both artificial visual pigments lacking the C5-C6 double bond. The transition temperature for BSI formation is higher in a-isorhodopsin, suggesting an interaction involving the chromophore ring in BSI formation. The transition temperature for Lumi formation is similar for these two pigments as well as for native rhodopsin, suggesting comparable changes in the protein environment in that transition.  相似文献   

9.
Model studies including quantum chemical calculations and the measurement of infrared and ultraviolet spectra are presented as contributions to the elucidation of the nature of the photochemical step of vision. The importance of the hydrogen bond in which the protonated nitrogen of the retinal Schiff base is involved is stressed as well as that of the perturbation of the β-ionone ring by negative groups. It is suggested that by combining these two perturbations the low excitation energy of rhodopsin can be obtained without actual protonation of the Schiff-base prior to photon absorption. The variation of rhodopsin's color from one species to another could also be related to this. Protonation could be a consequence of photonabsorption and the higher basicity of the excited state. This, in turn, leads to the suggestion that the protonated species is actually bathorhodopsin, not rhodopsin. Comments are made on the identity of the (ππ*) state which is involved.  相似文献   

10.
We have investigated geometries and excitation energies of bovine rhodopsin and some of its mutants by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in ONIOM scheme, employing B3LYP and BLYP density functionals as well as DFTB method for the QM part and AMBER force field for the MM part. QM/MM geometries of the protonated Schiff-base 11- cis-retinal with B3LYP and DFTB are very similar to each other. TD-B3LYP/MM excitation energy calculations reproduce the experimental absorption maximum of 500 nm in the presence of native rhodopsin environment and predict spectral shifts due to mutations within 10 nm, whereas TD-BLYP/MM excitation energies have red-shift error of at least 50 nm. In the wild-type rhodopsin, Glu113 shifts the first excitation energy to blue and accounts for most of the shift found. Other amino acids individually contribute to the first excitation energy but their net effect is small. The electronic polarization effect is essential for reproducing experimental bond length alternation along the polyene chain in protonated Schiff-base retinal, which correlates with the computed first excitation energy. It also corrects the excitation energies and spectral shifts in mutants, more effectively for deprotonated Schiff-base retinal than for the protonated form. The protonation state and conformation of mutated residues affect electronic spectrum significantly. The present QM/MM calculations estimate not only the experimental excitation energies but also the source of spectral shifts in mutants.  相似文献   

11.
FEMTOSECOND STUDIES OF PRIMARY PHOTOPROCESSES IN OCTOPUS RHODOPSIN   总被引:1,自引:0,他引:1  
Abstract— Femtosecond spectroscopy of octopus rhodopsin in H2O and D2O was performed over a very wide spectral region of 400–1000 nm. Transient gain and absorption from the excited state were observed for the first time around 650 and 700 nm, respectively, just after 300 fs pulse excitation. Bathorhodopsin was formed within 400 fs from the excited state; therefore, the cis-trans isomerization completes within 400 fs. The first intermediate "primerhodopsin" found in our previous paper is most likely "quasi-thermal" bathorhodopsin, in which the local thermalization of the chromophore is achieved. Then cooling down of the chromophore to the surrounding protein temperature takes place with 20 ± 10 ps along with blue-shifting of a spectrum of 10 ± 5 nm. In addition to these observations, a prominent gain in the region of > 850 nm was observed and decayed with 2–3 ps in H2O. A similar time constant was estimated for a partial decay of an induced absorption around 600 nm. This process may be related with two forms of bathorhodopsin reported previously. In this scheme, two forms of bathorhodopsin are formed with time constants of about 400 fs and 2 ps. In the sample in D2O, time constant of 3–4 ps was obtained for the slower process.  相似文献   

12.
A molecular dynamics study of the dark adapted visual pigment rhodopsin molecule was carried out. The interaction of the chromophore group, 11-cis-retinal, with the nearest amino acid residues in the chromophore center of the molecule, namely, in the region of the protonated Schiff base linkage, was analyzed. Most likely, the interaction of the CH=NH bond with the negatively charged amino acid residue Glu113 cannot be described as a simple electrostatic interaction of two oppositely charged groups. One can propose that not only Glu113 but also Glu181 and Ser186 are involved in stabilization of the protonated Schiff base linkage. Accord-ing to calculations, Glu181 interacts, as the counter-ion, with the Schiff base indirectly via Ser186. The intramolecular mechanisms of protonated Schiff base stabilization in rhodopsin are discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 19–27, January, 2007.  相似文献   

13.
The role of water molecules in spectral tuning of proteins has been left largely unexplored. This topic is important because changing hydrogen bond patterns during the activation process may lead to spectral shifts which can be of diagnostic value for the underlying structures. Arguments put forward in this article are based on spectral shift calculations of the rhodopsin and bathorhodopsin chromophore due to wat2a and 2b in the presence and absence of the counterion and of the amino acids lining the rhodopsin binding pocket. They show, among others, that a single water molecule can shift the absorbance by up to 0.1 eV or 34 nm depending on the environment of the chromophore.  相似文献   

14.
The resonance Raman spectrum of octopus bathorhodopsin in the fingerprint region and in the ethylenic-Schiff base region have been obtained at 80 K using the "pump-probe" technique as have its deuterated chromophore analogues at the C7D; C8D; C8,C7D2; C10D; C11D; C11, C12D2; C14D; C15D; C14, C15D2; and N16D positions. While these data are not sufficient to make definitive band assignments, many tentative assignments can be made. Because of the close spectral similarity between the octopus bathorhodopsin spectrum and that of bovine bathorhodopsin, we conclude that the essential configuration of octopus bathorhodopsin's chromophore is all-trans like. The data suggest that the Schiff base, C = N, configuration is trans (anti). The observed conformationally sensitive fingerprint bands show pronounced isotope shifts upon chromophore deuteration. The size of the shifts differ, in certain cases, from those found for bovine bathorhodopsin. Thus, the internal mode composition of the fingerprint bands differs somewhat from bovine bathorhodopsin, suggesting a somewhat different in situ chromophore conformation. An analysis of the NH bend frequency, the Schiff base C = N stretch frequency, and its shift upon Schiff base deuteration suggests that the hydrogen bonding between the protonated Schiff base with its protein binding pocket is weaker in octopus bathorhodopsin than in bovine bathorhodopsin but stronger than that found in bacteriorhodopsin's bR568 pigment.  相似文献   

15.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

16.
Abstract— Squid hypsorhodopsin is produced by irradiating rhodopsin or isorhodopsin with yellow light (>480nm) at liquid He temperature (4K). Compared with cattle rhodopsin, squid rhodopsin easily converts to a photosteady state mixture composed of rhodopsin, isorhodopsin, hypsorhodopsin and bathorhodopsin at this temperature and the amount of hypsorhodopsin in the mixture is high. Hypsorhodopsin has a main absorption peak at 446 nm, and its extinction coefficient is 1.16 times larger than that of rhodopsin. On warming above 35 K, squid hypsorhodopsin converts to bathorhodopsin. A kinetic analysis indicates that the hypsorhodopsin can be formed not only from rhodopsin but also from isorhodopsin. On absorption of light. both squid bathorhodopsin and hypsorhodopsin convert to a mixture of rhodopsin and isorhodopsin.  相似文献   

17.
THE FORMATION OF TWO FORMS OF BATHORHODOPSIN AND THEIR OPTICAL PROPERTIES   总被引:3,自引:0,他引:3  
Abstract— Using two kinds of rhodopsin preparations (digitonin extract and rod outer segments suspension), we measured changes in absorption spectra during the conversion of rhodopsin or isorhodopsin to a photosteady state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (437 nm) at 77 K and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (> 650 nm) at 77 K. The reaction kinetics could be expressed with only one exponential in the former case and with two exponentials in the latter case. These data suggest that both rhodopsin and isorhodopsin are composed of a single molecular species, while bathorhodopsin is composed of two molecular species, designated as bathorhodopsin1 and bathorhodopsin2. The absorption spectra of these bathorhodopsin were calculated by two different methods (kinetic method and warming-cooling method). The former was based on the kinetics of the conversion of two forms of bathorhodopsin by irradiation with the red light. The spectra obtained by this method were consistent with those obtained by the warming-cooling method. Bathorhodopsin1 and bathorhodopsin2 have Λmax at 555 and 538 nm, respectively. The two forms of bathorhodopsin are interconvertible in the light, but not in the dark. Thus, we suggest that a rhodopsin molecule in the excited state relaxes to either bathorhodopsin1 or bathorhodopsin2 through one of the two parallel pathways.  相似文献   

18.
Photoexcitation of the flavin chromophore in the BLUF photosensor AppA results in a conformational change that leads to photosensor activation. This conformational change is mediated by a hydrogen-bonding network that surrounds the flavin, and photoexcitation is known to result in changes in the network that include a strengthening of hydrogen bonding to the flavin C4═O carbonyl group. Q63 is a key residue in the hydrogen-bonding network, and replacement of this residue with a glutamate results in a photoinactive mutant. While the ultrafast time-resolved infrared (TRIR) spectrum of Q63E AppA(BLUF) is characterized by flavin carbonyl modes at 1680 and 1650 cm(-1), which are similar in frequency to the analogous modes from the light activated state of the wild-type protein, a band is also observed in the TRIR spectrum at 1724 cm(-1) that is unambiguously assigned to the Q63E carboxylic acid based on U-(13)C labeling of the protein. Light absorption instantaneously (<100 fs) bleaches the 1724 cm(-1) band leading to a transient absorption at 1707 cm(-1). Because Q63E is not part of the isoalloxazine electronic transition, the shift in frequency must arise from a sub picosecond perturbation to the flavin binding pocket. The light-induced change in the frequency of the Q63E side chain is assigned to an increase in hydrogen-bond strength of 3 kcal mol(-1) caused by electronic reorganization of the isoalloxazine ring in the excited state, providing direct evidence that the protein matrix of AppA responds instantaneously to changes in the electronic structure of the chromophore and supporting a model for photoactivation of the wild-type protein that involves initial tautomerization of the Q63 side chain.  相似文献   

19.
Abstract— Absorbance changes were monitored from 250 to 650 nm during the first microsecond after photolysis of detergent suspensions of bovine rhodopsin at 20°C. Global analysis of the resulting data produced difference spectra for bathorhodopsin, BSI and lumirhodopsin which give the change in absorbance of the aromatic amino acid side chains in these photointermediates relative to rhodopsin. These spectra show that the significant bleaching of absorbance near 280 nm, which has been seen previously for the lumirhodopsin, metarhodopsin I and metarhodopsin II intermediates, extends to times as early as bathorhodopsin. Because no corresponding absorbance increase is observed in the 250-275 nm region, the earliest bleaching of the 280 nm absorbance in rhodopsin is attributed to disruption of a hyperchromic interaction affecting Trp265. Partial decay of this 280 nm bleaching as bathorhodopsin converts to BSI takes place maximally near 290 nm, where Trp265 has been shown to absorb, and could be due to the ring of the retinylidene chromophore resuming a position at the BSI stage that reestablishes the hyperchromic interaction with Trp265. A subsequent change in the 250-300 nm region, which has no counterpart in the visible chromophore bands, indicates the possible presence of a protein-localized process as lumirhodopsin is formed.  相似文献   

20.
Abstract Extensive dehydration of air-dried films of bovine rod outer segment membranes induces fully reversible changes in the absorption spectrum of rhodopsin, indicative of deprotonation of the retinylidene Schiff base in more than 50% of the rhodopsin molecules in the sample. This suggests that water is involved at the site of the Schiff base protonation in rhodopsin. In contrast, the spectrum of metarhodopsin I is resistant to similar dehydrating conditions, implying a significant difference in the mechanism for protonation in metarhodopsin I. The photochemistry of dehydrated membranes was also explored. Photoexcitation of deprotonated rhodopsin (λmax 390 nm) induces a large bathochromic shift of the chromophore. The major photoproduct at room temperature was spectrally similar to metarhodopsin I (λmax, 478 nm). These findings suggest that intramolecular proton transfer involving the Schiff base proton may occur in the earlier stages of the visual cycle, prior to or during the formation of metarhodopsin I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号