首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.  相似文献   

2.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.  相似文献   

3.
We investigated solvation structures of I(-) on and below a surface of an aqueous solution by photodetachment spectroscopy. An aqueous solution of an alkali halide was introduced to the vacuum as a continuous liquid flow (liquid beam), and the liquid beam was irradiated with a UV laser pulse. The intensity of electrons emitted from the surface by the laser excitation was measured as a function of wavelength (photodetachment spectroscopy), and we obtained absorption spectrum of I(-) on and below the solution surface. From the absorption spectrum, we found that I(-) starts to appear on the solution surface as the bulk NaI concentration increases. Similar concentration dependence was observed for the KI solution. We also found that I(-) located inside the solution is pushed to the surface, when NaCl is added to the solution. These changes are explained in terms of the difference in the polarizability of halide ions.  相似文献   

4.
The interaction between a hydrogen molecule and the halide anions F(-), Cl(-), Br(-), and I(-) has been studied at different levels of theory and with different basis sets. The most stable configurations of the complexes have a linear geometry, while the t-shaped complexes are saddle points on the potential energy surface, opposite to what is observed for alkali cations. An electrostatic analysis conducted on the resulting adducts has highlighted the predominance of the electrostatic term in the complexation energy and, in particular, of the quadrupole- and dipole-polarizability dependent contributions. Another striking difference with respect to the positive ions, is the fact that although the binding energies have similar values (ranging between 25 and 3 kJ /mol for F(-) and I(-), respectively), the vibrational shift of the nu(H-H) and in general the perturbation of the hydrogen molecule in complexes are much greater in the complexes with anions (Delta nu(H-H) ranges between -720 and -65 cm(-1)). Another difference with respect to the interaction with cations is a larger charge transfer from the anion to the hydrogen molecule. The Delta nu is the result of the cooperative role of the electrostatics and of the charge transfer in the interaction. The correlation between binding energies and vibrational shift is far from linear, contrary to what is observed for cation complexes, in accordance with the higher polarizability and dynamic polarizability of the molecule along the molecular axis. The observed correlation may be valuable in the interpretation of spectra and thermodynamic properties of adsorbed H(2) in storage materials.  相似文献   

5.
A theory, based on a modified Poisson-Boltzmann equation, is presented that allows us to calculate the excess interfacial tension of an electrolyte-oil interface accurately. The chaotropic (structure-breaking) ions are found to adsorb to the water-oil interface as the result of large polarizability, weak hydration, and hydrophobic and dispersion interactions. However, kosmotropic (structure-making) anions as well as potassium and sodium ions are found to be repelled from the interface. The adsorption of I(-) and ClO(4)(-) is found to be so strong as to lower the interfacial tension of the water-oil interface, in agreement with the experimental data. The agreement between the calculated interfacial tensions and the available experimental data is very good. The theory is used to predict the interfacial tensions of six other potassium salts, for which no experimental data is available at the moment.  相似文献   

6.
A study of dilational rheological properties of polymers at interfaces   总被引:4,自引:0,他引:4  
Viscoelastic properties of two polymers, partially hydrolyzed polyacrylamide and partially hydrolyzed modified polyacrylamide, widely used in chemical flooding in the petroleum industry, were investigated at three interfaces, water-air, water-dodecane, and water-crude oil, by means of a dilational method provided by I.T. Concept, France, at 85 degrees C. Polymer solutions were prepared in brine with 10,000 mg/l sodium chloride and 2000 mg/l calcium chloride. It has been shown that the viscoelastic modulus increases with the increment of polymer concentration in the range of 0-1500 mg/l at the water-air interface. Each polymer shows different viscoelatic behavior at different interfaces. Generally speaking, values of the viscoelastic modulus (E), the real part (E'), and the imaginary part (E") at the crude oil-water interface for each polymer are lower than at the air-water or water-dodecane interface. The two polymers display different interfacial properties at the same interface. Polymer No. 2 gives more viscous interfaces than polymer No. 1. All the information obtained from this paper will be helpful in understanding the interfacial rheology of ultra-high-molecular-weight polymer solutions.  相似文献   

7.
The negative ion electrospray ionization (ESI) mass spectra of a series of dicarboxylic acids, a pair of isomeric (cis/trans) dicarboxylic acids and two pairs of isomeric (positional) substituted benzoic acids, including a pair of hydroxybenzoic acids, were recorded in the presence of halide ions (F(-), Cl(-), Br(-) and I(-)). The ESI mass spectra contained [M--H](-) and [M+X](-) ions, and formation of these ions is found to be characteristic of both the analyte and the halide ion used. The analytes showed a greater tendency to form adduct ions with Cl(-) under ESI conditions compared with the other halide ions used. The isomeric compounds yielded distinct spectra by which the isomers could be easily distinguished. The collision-induced dissociation mass spectra of [M+X](-) ions reflected the gas-phase basicities of both the halide ion and [M--H](-) ion of the analyte. However, the relative ordering of gas-phase basicities of all analyte [M--H](-) and halide ions could not account for the dominance of chloride ion adducts in ESI mass spectra of the analytes mixed with equimolar quantities of the four halides.  相似文献   

8.
The underlying mechanisms of specific ion effects on structure and dynamics of aqueous solutions have been long debated. On the other hand, the role of polarization at hydrophobic interfaces when aqueous electrolytes are present is of great importance, as it has been observed at the air-vapor interface. In this work, we have explored influence of ionic species on microscopical properties of aqueous sodium halide solutions constrained inside a double layer graphene channel, as a model for a realistic hydrophobic interface. Our systems have been simulated by molecular dynamics techniques, explicitly including polarization in water molecules and ions. Water and ionic density profiles showed the tendency of ionic species to occupy the whole space available, in good agreement with spectroscopic experimental data. The exception to this general behavior was fluoride, which preferred to stay away from interfaces. Two main regions were defined: interfaces and the central part of the slab, the bulklike region. Ionic hydration numbers at interfaces were lower than those at the bulklike area by about one to two units. We have also analyzed water-ion orientations and polarization distributions and obtained a marked dependence on ionic concentration. Residence time of anions suffered important fluctuations and tended to be largest at interfaces. Large variations of the static permittivity between interfacial and bulklike regions were observed. Ionic diffusion was found to be between 10(-5) and 10(-6) cm(2) s(-1) and showed to be mainly dependent on the concentration, whereas the type of anion considered and the polarizability had significantly less relevance. Conductivities were found to be dependent on ionic concentrations and the polarizabilities of anions, as well as on the spatial direction considered.  相似文献   

9.
We have investigated the structures and properties of alkali halide cluster ions produced by laser vaporization of solid samples. In many alkali halide cluster ions, we observe the appearances of bulk-like characteristics even at sub-nanometer sizes:fcc crystalline structures (including surface terraces), ionic binding, and a susceptibility to common bulk defects such as F and H color-centers. To understand the origins of cluster structures, we have made calculations of ground state energetics, high-temperature molecular dynamics, and the electronic structure of clusters having excess electrons.  相似文献   

10.
Attempt has been made to elucidate the mechanism of electric potential oscillations at oil-aqueous solution interface involving adsorption at oil-vapor interface on a semi-theoretical basis. The mechanism stipulates adsorption of ammonia, amines and pheromones at the liquid-vapor interface followed by transfer of ions through membrane-aqueous solution interface and subsequent interaction of ammonium (amine) ions and carbocations from pheromones with diffusing halide ions from the bulk. Relationship of the above mechanism with sensing mechanism of smell by olfactory nerves has also been pointed out.  相似文献   

11.
Specific ion effects, related to the hydration of ions and ion-solute interactions, play a fundamental part in many processes in chemistry and biology. Although intensively studied since the seminal studies of Franz Hofmeister and co-workers, their molecular origin has only recently started to be unveiled. In this work, we have investigated the interaction between halide anions and a selected set of amino acid residues in an attempt to identify the forces behind ion specificity. Two-dimensional potential energy surfaces have been calculated with the use of local second order M?ller-Plesset perturbation theory (LMP2), coupled with the COSMO model to describe solvent effects. The results show in great detail the impact of dispersion interactions, in particular for the heavier anions (Br(-) and I(-)). The obtained potential energy surfaces also hint at a greater mobility of iodide in the vicinity of a residue, which correlates well with its placing in the Hofmeister series.  相似文献   

12.
The surface activity of block copolymers of ethylene and propylene oxides, based on ethylenediamine, mono(ethylene glycol), and triethanolamine, was studied. Adsorption characteristics of the investigated compounds at the water-air interface are estimated.  相似文献   

13.
研究了离子色谱-直接电导检测法分离测定离子液体中的卤素离子(F~-、Cl~-、Br~-)杂质.采用Shim-pack IC-A3阴离子交换色谱柱,考察了淋洗液种类及浓度、流速和色谱柱温度对分离测定的影响.最佳色谱条件为:以1.25 mmol/L邻苯二甲酸氢钾为淋洗液,流速1.5 mL/min,色谱柱温45 ℃.在此条件下可以基线分离卤素离子,且NO~-_3、BF~-_4、SO~(2-)_4不干扰测定.该法测定卤素离子的检出限(S/N=3)为0.02 ~0.11 mg/L,峰面积的相对标准偏差(n=5)不大于0.7%,F~-、Cl~- 和Br~- 的标准曲线的线性范围分别为0.1 ~50、0.1 ~50、0.5 ~100 mg/L.将方法用于烷基咪唑四氟硼酸盐离子液体中卤素离子杂质的测定,加标回收率为98% ~102%.  相似文献   

14.
Nitrate ions commonly coexist with halide ions in aged sea salt particles, as well as in the Arctic snowpack, where NO(3)(-) photochemistry is believed to be an important source of NO(y) (NO + NO(2) + HONO + ...). The effects of bromide ions on nitrate ion photochemistry were investigated at 298 ± 2 K in air using 311 nm photolysis lamps. Reactions were carried out using NaBr/NaNO(3) and KBr/KNO(3) deposited on the walls of a Teflon chamber. Gas phase halogen products and NO(2) were measured as a function of photolysis time using long path FTIR, NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). Irradiated NaBr/NaNO(3) mixtures show an enhancement in the rates of production of NO(2) and Br(2) as the bromide mole fraction (χ(NaBr)) increased. However, this was not the case for KBr/KNO(3) mixtures where the rates of production of NO(2) and Br(2) remained constant over all values of χ(KBr). Molecular dynamics (MD) simulations show that the presence of bromide in the NaBr solutions pulls sodium toward the solution surface, which in turn attracts nitrate to the interfacial region, allowing for more efficient escape of NO(2) than in the absence of halides. However, in the case of KBr/KNO(3), bromide ions do not appreciably affect the distribution of nitrate ions at the interface. Clustering of Br(-) with NO(3)(-) and H(2)O predicted by MD simulations for sodium salts may facilitate a direct intermolecular reaction, which could also contribute to higher rates of NO(2) production. Enhanced photochemistry in the presence of halide ions may be important for oxides of nitrogen production in field studies such as in polar snowpacks where the use of quantum yields from laboratory studies in the absence of halide ions would lead to a significant underestimate of the photolysis rates of nitrate ions.  相似文献   

15.
Two-dimensional mixtures were studied between a polymer, polymethylmethacrylate (PMMA) which has at the water-air interface its chains distributed almost parallel to that interface, and two esters, methylstearate (MS) and methyloleate (MO), characterized by having the same chain length but a different interface orientation.It was shown that the main interactions occurring are those between the hydrophobic chains, and consequently that compatibility between the substances depends essentially on their having the same interface orientation.  相似文献   

16.
Samec Z  Samcová E  Girault HH 《Talanta》2004,63(1):21-32
This article reviews the development in ion amperometry at the interface between two immiscible electrolyte solutions (ITIES) in view of realizing the amperometric ion-selective electrode (ISE). The concept of polarizability of ITIES in a multi-ion system is outlined. Principle aspects of ion amperometry at ITIES are discussed including the use of amperometry as a tool for the clarification of the ion sensing mechanism, and for determining the concentrations of ions in the solution. The reference is made to recent amperometric measurements at the supported liquid membrane (SLM) and polymer composite liquid membranes (PCLM), which, together with the micro-hole supported ITIES, appear to be particularly suitable for realization of the amperometric ISE.  相似文献   

17.
We present results from molecular dynamics simulation of aqueous solutions of alkali halide salts (NaI and NaF) at the interface with hydrophobic objects. The primary objective of this study is to investigate the structural properties of the salt solutions at the hydrophobic surface. An alkane crystal has been taken as the parent model for a hydrophobic surface. A hexagonal hole was created on it, which was half a nm deep and 2.5 nm wide. The density distributions of different species (water, anions, and cations) are studied as a function of distance from the surface. While iodide prefers the interface, the fluoride ions stay inside the bulk water region. The higher concentration of iodide ions at the interface drags sodium counterions to the interface. It also decreases the water density at the interface because of steric effects of the iodide ions. The number of contacts between the surface carbons and water decreases in the case of NaI solutions but is unchanged for NaF solutions. The orientation of the water-ion and the water-water hydrogen bond vector orientations near the interface is discussed in detail.  相似文献   

18.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   

19.
用密度泛函理论考察了甲基咪唑和一系列的卤代烷烃(氯乙烷,氯丁烷,溴乙烷,溴丁烷)反应合成咪唑类离子液体的反应机理. 在B3LYP/6-31++G**//B3LYP/6-31G*基组水平上找到了两条反应路径:路径A(反应物→TS1→P1)和路径B(反应物→TS2→P2). 在路径A中, 卤素离子和咪唑环C2上的氢质子形成氢键;在路径B中, 卤素离子和咪唑环C5上的氢质子形成氢键. 计算发现, 氢键的形成在反应中起到了非常重要的作用, 特别是咪唑环C2上的氢质子在和卤素离子成氢键后形成了一个五员环结构的过渡态, 该过渡态能量较低. 经过渡态TS1的反应途径其活化能要低于经过渡态TS2的反应途径, 反应路径A为主要的反应通道. 计算结果表明, 经过渡态TS1的反应途径是一放热过程, 这和实验观察现象一致.  相似文献   

20.
Recently we measured the amount of the single product, Br(3)(-), of steady-state radiolysis of highly concentrated Br(-) aqueous solutions, and we showed the effect of the direct ionization of Br(-) on the yield of Br(3)(-). Here, we report the first picosecond pulse-probe radiolysis measurements of ionization of highly concentrated Br(-) and Cl(-) aqueous solutions to describe the oxidation mechanism of the halide anions. The transient absorption spectra are reported from 350 to 750 nm on the picosecond range for halide solutions at different concentrations. In the highly concentrated halide solutions, we observed that, due to the presence of Na(+), the absorption band of the solvated electron is shifted to shorter wavelengths, but its decay, taking place during the spur reactions, is not affected within the first 4 ns. The kinetic measurements in the UV reveal the direct ionization of halide ions. The analysis of pulse-probe measurements show that after the electron pulse, the main reactions in solutions containing 1 M of Cl(-) and 2 M of Br(-) are the formation of ClOH(-?) and BrOH(-?), respectively. In contrast, in highly concentrated halide solutions, containing 5 M of Cl(-) and 6 M of Br(-), mainly Cl(2)(-?) and Br(2)(-?) are formed within the electron pulse without formation of ClOH(-?) and BrOH(-?). The results suggest that, not only Br(-) and Cl(-) are directly ionized into Br(?) and Cl(?) by the electron pulse, the halide atoms can also be rapidly generated through the reactions initiated by excitation and ionization of water, such as the prompt oxidation by the hole, H(2)O(+?), generated in the coordination sphere of the anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号