首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
Absolute bond dissociation energies of serine (Ser) and threonine (Thr) to alkali metal cations are determined experimentally by threshold collision-induced dissociation of M+AA complexes, where M+=Li+, Na+, and K+ and AA=Ser and Thr, with xenon in a guided ion beam tandem mass spectrometer. Experimental results show that the binding energies of both amino acids to the alkali metal cations are very similar to one another and follow the order of Li+>Na+>K+. Quantum chemical calculations at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level show good agreement with the experimental bond energies. Theoretical calculations show that all M+AA complexes have charge-solvated structures (nonzwitterionic) with [CO, N, O] tridentate coordination.  相似文献   

2.
The potential energy surface for activation of methane by the third-row transition metal cation, Au+, is studied experimentally by examining the kinetic energy dependence of this reaction using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au+ primarily in its 1S0 (5d10) electronic ground state level but with some 3D (and perhaps higher lying) excited states that can be completely removed by a suitable quenching gas (N2O). Au+ (1S0) reacts with methane by endothermic dehydrogenation to form AuCH2+ as well as C-H bond cleavage to yield AuH+ and AuCH3+. The kinetic energy dependences of the cross sections for these endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Au+ - CH2) = 3.70 +/- 0.07 and D0(Au+ -CH3) = 2.17 +/- 0.24. Ab initio calculations at the B3LYPHW + /6-311++G(3df,3p) level performed here show good agreement with the experimental bond energies and previous theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surface. Surprisingly, the dehydrogenation reaction does not appear to involve an oxidative addition mechanism. We also compare this third-row transition metal system with the first-row and second-row congeners, Cu+ and Ag+. Differences in thermochemistry can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals.  相似文献   

3.
The structure and bonding of halogens on various transition metal low-index surfaces has been studied by means of density functional theory (DFT) calculations using periodic slabs to model the surface. This approach is shown to be capable of reproducing available experimental data of naked and halogen-covered surfaces. Periodic trends are discerned and discussed for several properties, including metal-halogen bond distances and vibrational frequencies, adsorption energies, and bond ionicities, which have been evaluated by a Bader population analysis of the corresponding density. A simple correlation is discerned, relating the bond ionicity to the metal work function, so that higher work function surfaces are associated with more covalent bonding. Periodic trends in bond ionicities and metal-halogen vibrational frequencies are in harmony with corresponding data derived in an electrochemical environment, indicating that the metal-halogen bonding in vacuum share some features with the electrode metal surface-halogen bonding.  相似文献   

4.
Cao X  Heidelberg D  Ciupka J  Dolg M 《Inorganic chemistry》2010,49(22):10307-10315
The experimentally observed extraction complexes of trivalent lanthanide Eu(III) and actinide Am(III)/Cm(III) cations with purified Cyanex301 [bis(2,4,4-trimethylpentyl)dithiophosphinic acid, HBTMPDTP denoted as HL], i.e., ML(3) (M = Eu, Am, Cm) as well as the postulated complexes HAmL(4) and HEuL(4)(H(2)O) have been studied by using energy-consistent 4f- and 5f-in-core pseudopotentials for trivalent f elements, combined with density functional theory and second-order M?ller-Plesset perturbation theory. Special attention was paid to explaining the high selectivity of Cyanex301 for Am(III)/Cm(III) over Eu(III). It is shown that the neutral complexes ML(3), where L acts as a bidentate ligand and the metal cation is coordinated by six S atoms, are most likely the most stable extraction complexes. The calculated metal-sulfur bond distances for ML(3) do reflect the cation employed; i.e., the larger the cation, the longer the metal-sulfur bond distances. The calculated M-S and M-P bond lengths agree very well with the available experimental data. The obtained changes of the Gibbs free energies in the extraction reactions M(3+) + 3HL → ML(3) + 3H(+) agree with the thermodynamical priority for Am(3+) and Cm(3+). Moreover, the ionic metal-ligand dissociation energies of the extraction complexes ML(3) show that, although EuL(3) is the most stable complex in the gas phase, it is the least stable in aqueous solution.  相似文献   

5.
The synthesis, structure, and reactivity of thorium oxo and sulfido metallocenes have been comprehensively studied. Heating of an equimolar mixture of the dimethyl metallocene [η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)](2)ThMe(2) (2) and the bis-amide metallocene [η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)](2)Th(NH-p-tolyl)(2) (3) in refluxing toluene results in the base-free imido thorium metallocene, [η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)](2)Th═N(p-tolyl) (4), which is a useful precursor for the preparation of oxo and sulfido thorium metallocenes [η(5)-1,2,4-(Me(3)C)(3)C(5)H(2)](2)Th═E (E = O (5) and S (15)) by cycloaddition-elimination reaction with Ph(2)C═E (E = O, S) or CS(2). The oxo metallocene 5 acts as a nucleophile toward alkylsilyl halides, while sulfido metallocene 15 does not. The oxo metallocene 5 and sulfido metallocene 15 undergo a [2 + 2] cycloaddition reaction with Ph(2)CO, CS(2), or Ph(2)CS, but they show no reactivity with alkynes. Density functional theory (DFT) studies provide insights into the subtle interplay between steric and electronic effects and rationalize the experimentally observed reactivity patterns. A comparison between Th, U, and group 4 elements shows that Th(4+) behaves more like an actinide than a transition metal.  相似文献   

6.
Mercury chalcogenides HgE (E=O, S, Se, etc.) are described in the literature to possess rather stable bonds with bond dissociation energies between 53 and 30 kcal mol(-1), which is actually difficult to understand in view of the closed-shell electron configuration of the Hg atom in its ground state (...4f(14)5d(10)6s(2)). Based on relativistically corrected many body perturbation theory and coupled-cluster theory [IORAmm/MP4, Feenberg-scaled IORAmm/MP4, IORAmm/CCSD(T)] in connection with IORAmm/B3LYP theory and a [17s14p9d5f]/aug-cc-pVTZ basis set, it is shown that the covalent HgE bond is rather weak (2-7 kcal mol(-1)), the ground state of HgE is a triplet rather than a singlet state, and that the experimental bond dissociation energies have been obtained for dimers (or mixtures of monomers, dimers, and even trimers) Hg2E2 rather than true monomers. The dimers possess association energies of more than 100 kcal mol(-1) due to electrostatic forces between the monomer units. The covalent bond between Hg and E is in so far peculiar as it requires a charge transfer from Hg to E (depending on the electronegativity of E) for the creation of a single bond, which is supported by electrostatic forces. However, a bonding between Hg and E is reduced by strong lone pair-lone pair repulsion to a couple of kcal mol(-1). Since a triplet configuration possesses somewhat lower destabilizing lone pair energies, the triplet state is more stable. In the dimer, there is a Hg-Hg pi bond of bond order 0.66 without any a support. Weak covalent Hg-O interactions are supported by electrostatic bonding. The results for the mercury chalcogenides suggests that all experimental dissociation energies for group-12 chalcogenides have to be revised because of erroneous measurements.  相似文献   

7.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

8.
We present the kinetic energy dependence of reactions of the late third-row transition metal cation Ir(+) with H(2), D(2), and HD measured using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Ir(+) ions in its electronic ground state term and primarily in the ground spin-orbit level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependence of the cross sections for forming IrH(+) and IrD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Ir(+)-H) = 3.12 +/- 0.06 eV. Ab initio calculations at the B3LYP/HW+/6-311+G(3p), BHLYP/HW+/6-311+G(3p), and QCISD(T)/HW+/6-311+G(3p) levels performed here show reasonable agreement with the experimental bond energies and with the previous theoretical values available. Theory also provides the electronic structures of these species and the reactive potential energy surfaces. We also compare this third-row transition metal system with those of the first-row and second-row congeners Co(+) and Rh(+). We find that Ir(+) has a stronger M(+)-H bond, which can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. Results from reactions with HD provide insight into the reaction mechanisms and indicate that Ir(+) reacts largely via an insertion mechanism, in contrast with the lighter group 9 metal ions Co(+) and Rh(+) which react via direct mechanisms.  相似文献   

9.
Metallocene ions (Cp(2)M(+), M = Cr, Co, Ni) were studied by threshold photoelectron photoion coincidence spectroscopy (TPEPICO) to investigate the mechanism, energetics, and kinetics of the ionic dissociation processes. The examined energy-selected Cp(2)M(+) ions fragment by losing the neutral cyclopentadienyl ligand. In addition, CH and C(2)H(2) losses appear as minor channels, while the cobaltocene ion also loses an H atom. A possible isomerization pathway has also been observed for Cp(2)Ni(+), yielding a complex with pentafulvalene (C(10)H(8)) with a loss of H(2). In order to determine the 0 K appearance energies for the CpM(+) fragment ions, the asymmetric time-of-flight peak shapes and the breakdown diagrams of the energy-selected metallocene ions were modeled by both the rigid activated complex (RAC) Rice-Ramsperger-Kassel-Marcus (RRKM) theory and the simplified statistical adiabatic channel model (SSACM). The following appearance energies were obtained with SSACM, which is more reliable for loose transition states: 10.57 ± 0.14, 11.01 ± 0.13, and 10.18 ± 0.13 eV for M = Cr, Co, and Ni, respectively. These values combined with the corresponding adiabatic ionization energies yield M-Cp bond dissociation energies in Cp(2)M(+) ions of 5.04 ± 0.16, 5.77 ± 0.15, and 3.96 ± 0.15 eV. Density functional calculations at the B3LYP/6-311G(d,p) level of theory were used to determine the structures of these complexes and to provide parameters necessary for the analysis of the experimental data. The trends in the M-Cp bond energies can be related to the electronic structures of the metallocene ions based on a simple molecular orbital picture.  相似文献   

10.
Ab initio molecular orbital calculations have been carried out to investigate the structure and the stability of noble gas insertion compounds of the type MNgF (M=Cu and Ag, and Ng=Ar, Kr, and Xe) through second order Moller-Plesset perturbation method. All the species are found to have a linear structure with a noble gas-noble metal bond, the distance of which is closer to the respective covalent bond length in comparison with the relevant van der Waals limit. The dissociation energies corresponding to the lowest energy fragmentation products, MF+Ng, have been found to be in the range of -231 to -398 kJ/mol. The respective barrier heights pertinent to the bent transition states (M-Ng-F bending mode) are quite high for the CuXeF and AgXeF species, although for the Ar and Kr containing species the same are rather low. Nevertheless the M-Ng bond length in MNgF compounds reported here is the smallest M-Ng bond ever predicted through any experimental or theoretical investigation, indicating strongest M-Ng interaction. All these species (except AgArF) are found to be metastable in their respective potential energy surface, and the dissociation energies corresponding to the M+Ng+F fragments have been calculated to be 30.1-155.3 kJ/mol. Indeed, in the present work we have demonstrated that the noble metal-noble gas interaction strength in MNgF species (with M=Cu and Ag, and Ng=Kr and Xe) is much stronger than that in NgMF systems. Bader's [Atoms in molecules-A Quantum Theory (Oxford University Press, Oxford, 1990)] topological theory of atoms in molecules (AIM) has been employed to explore the nature of interactions involved in these systems. Geometric as well as energetic considerations along with AIM results suggest a partial covalent nature of M-Ng bonds in these systems. The present results strengthen our earlier work and further support the proposition on the possibility of experimental identification of this new class of insertion compounds of noble gas atoms containing noble gas-noble metal bond.  相似文献   

11.
The formation and physicochemical properties of polymer electrolytes strongly depend on the lattice energy of metal salts. An indirect but efficient way to estimate the lattice energy through the relationship between the heterolytic bond dissociation and lattice energies is proposed in this work. The heterolytic bond dissociation energies for alkali metal compounds were calculated theoretically using the Density Functional Theory (DFT) of B3LYP level with 6‐311+G(d,p) and 6‐311+G(2df,p) basis sets. For transition metal compounds, the same method was employed except for using the effective core potential (ECP) of LANL2DZ and SDD on transition metals for 6‐311+G(d,p) and 6‐311+G(2df,p) calculations, respectively. The dissociation energies calculated by 6‐311+G(2df,p) basis set combined with SDD basis set were better correlated with the experimental values with average error of ca. ±1.0% than those by 6‐311+G* combined with the LANL2DZ basis set. The relationship between dissociation and lattice energies was found to be fairly linear (r>0.98). Thus, this method can be used to estimate the lattice energy of an unknown ionic compound with reasonably high accuracy. We also found that the dissociation energies of transition metal salts were relatively larger than those of alkaline metal salts for comparable ionic radii. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 827–834, 2001  相似文献   

12.
Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.  相似文献   

13.
The thermochemistry of the formation of Lewis base adducts of BH(3) in tetrahydrofuran (THF) solution and the gas phase and the kinetics of substitution on ammonia borane by triethylamine are reported. The dative bond energy of Lewis adducts were predicted using density functional theory at the B3LYP/DZVP2 and B3LYP/6-311+G** levels and correlated ab initio molecular orbital theories, including MP2, G3(MP2), and G3(MP2)B3LYP, and compared with available experimental data and accurate CCSD(T)/CBS theory results. The analysis showed that the G3 methods using either the MP2 or the B3LYP geometries reproduce the benchmark results usually to within ~1 kcal/mol. Energies calculated at the MP2/aug-cc-pVTZ level for geometries optimized at the B3LYP/DZVP2 or B3LYP/6-311+G** levels give dative bond energies 2-4 kcal/mol larger than benchmark values. The enthalpies for forming adducts in THF were determined by calorimetry and compared with the calculated energies for the gas phase reaction: THFBH(3) + L → LBH(3) + THF. The formation of NH(3)BH(3) in THF was observed to yield significantly more heat than gas phase dative bond energies predict, consistent with strong solvation of NH(3)BH(3). Substitution of NEt(3) on NH(3)BH(3) is an equilibrium process in THF solution (K ≈ 0.2 at 25 °C). The reaction obeys a reversible bimolecular kinetic rate law with the Arrhenius parameters: log A = 14.7 ± 1.1 and E(a) = 28.1 ± 1.5 kcal/mol. Simulation of the mechanism using the SM8 continuum solvation model shows the reaction most likely proceeds primarily by a classical S(N)2 mechanism.  相似文献   

14.
The CH and Chalogen bond dissociation energies (BDEs) were computed with the hybrid B3LYP/6-311 + G(2d,2p) theory model for chlorinated and fluorinated methane. All computed values were substantially lower (5–10 kcal mol−1) than the experimental values. To obtain better agreement, a correlation factor was introduced. When this factor was applied, excellent agreement between the B3LYP/6-311 + G(2d,2p) computed energies and the experimental BDEs was observed. On the other hand, the CBS-Q ab initio computational approach generated BDEs which are in good agreement with experimental values without a correction factor.  相似文献   

15.
A scheme for assigning molecular correlation energies to bonds within the molecule is proposed and applied to a variety of molecules for which nonempirical electronic energies and heats of formation are available. The bond correlation energies are employed to predict the molecular correlation energies of some molecules and good agreement was found between the predicted and “experimental” values.  相似文献   

16.
在密度泛函理论框架下, 应用不同泛函计算了配合物Ni(CO)n(n=1~4)的平衡几何构型和振动频率. 考察了泛函和基组重叠误差对预测Ni—CO键解离能的影响. 计算结果表明, 用杂化泛函能得到与实验一致的优化几何构型和较合理的振动频率. 对Ni(CO)n(n=2~4)体系, 用“纯”泛函, 如BP86和BPW91, 可得到与CCSD(T)更符合、 并与实验值接近的解离能. 当解离产物出现单个金属原子或离子(如金属羰基配合物的完全解离)时, BSSE校正项的计算中应保持金属部分的电子结构一致. 只有考虑配体基组和不考虑配体基组两种情况下金属的电子构型与配合物中金属的构型一致时, 才能得到合理的BSSE校正, 从而预测合理的解离能.  相似文献   

17.
Motivated by the synthesis of the first entirely inorganic metallocene sandwich ion [eta(5)-Ti-(P(5))(2)](2-) [E. Urnezius et al. Science 295, 832 (2002)], we have designed a new inorganic metallocene sandwich [eta(6)-V-(P(6))(2)] and multidecker sandwich clusters up to V(4)(P(6))(5) by employing an all electron gradient-corrected density functional theory. The binding energies of the V(n)(P(6))(n+1) complexes increase rapidly from half sandwich to the smallest full sandwich and become gradually afterwards. The highest occupied and lowest unoccupied molecular orbital gap and the vertical ionization energy decrease with increasing cluster size. The V(n)(P(6))(n+1) clusters are nonferromagnetic and prefer the lowest available spin states. The smallest sandwich cluster, V(P(6))(2), has the high stability and might serve as a building block for one-dimensional inorganic polymers with high stabilities.  相似文献   

18.
Quantum chemical calculations of CF(3)Br and the CF(3) radical are performed using density functional theory (DFT) and time-dependent DFT (TDDFT). Molecular structures, vibrational frequencies, dipole moment, bond dissociation energy, and vertical excitation energies of CF(3)Br are calculated and compared with available experimental results. The performance of six hybrid and five hybrid meta functionals in DFT and TDDFT calculations are evaluated. The ωB97X, B3PW91, and M05-2X functionals give very good results for molecular structures, vibrational frequencies, and vertical excitation energies, respectively. The ωB97X functional calculates well the dipole moment of CF(3)Br. B3LYP, one of the most widely used functionals, does not perform well for calculations of the C-Br bond length, bond dissociation energy, and vertical excitation energies. Potential energy curves of the low-lying excited states of CF(3)Br are obtained using the multiconfigurational spin-orbit ab initio method. The crossing point between 2A(1) and 3E states is located near the C-Br bond length of 2.45 ?. Comparison with CH(3)Br shows that fluorination does not alter the location of the crossing point. The relation between the calculated potential energy curves and recent experimental result is briefly discussed.  相似文献   

19.
Bond strengths for a series of Group 15 tetrachloride anions ACl4 (A = P, As, Sb, and Bi) have been determined by measuring thresholds for collision-induced dissociation of the anions in a flowing afterglow-tandem mass spectrometer. The central atoms in these systems have ten electrons, which violates the octet rule: the bond dissociation energies for ACl4- help to clarify the effect of the central atom on hypervalent bond strengths. The 0 K bond energies in kJ mol(-1) are D(Cl3A-CL-) = 90 +/- 7,115 +/- 7,161 +/- 8, and 154 +/- 15, respectively. Computational results using the B3LYP/LANL2DZpd level of theory are higher than the experimental bond energies. Calculations give a geometry for BiCl4 that is essentially tetrahedral rather than the see-saw observed for the other tetrachlorides. NBO calculations predict that the phosphorus and arsenic systems have 3C-4E bonds, while the antimony and bismuth systems are more ionic.  相似文献   

20.
The equilibrium geometries and first bond dissociation energies of the homoleptic complexes M(EMe)4 and M(CO)4 with M = Ni, Pd, Pt and E = B, Al, Ga, In, Tl have been calculated at the gradient corrected DFT level using the BP86 functionals. The electronic structure of the metal‐ligand bonds has been examined with the topologial analysis of the electron density distribution. The nature of the bonding is revealed by partitioning the metal‐ligand interaction energies into contributions by electrostatic attraction, covalent bonding and Pauli repulsion. The calculated data show that the M‐CO and M‐EMe bonding is very similar. However, the M‐EMe bonds of the lighter elements E are much stronger than the M‐CO bonds. The bond energies of the latter are as low or even lower than the M‐TlMe bonds. The main reason why Pd(CO)4 and Pt(CO)4 are unstable at room temperature in a condensed phase can be traced back to the already rather weak bond energy of the Ni‐CO bond. The Pd‐L bond energies of the complexes with L = CO and L = EMe are always 10 — 20 kcal/mol lower than the Ni‐L bond energies. The calculated bond energy of Ni(CO)4 is only Do = 27 kcal/mol. Thus, the bond energy of Pd(CO)4 is only Do = 12 kcal/mol. The first bond dissociation energy of Pt(CO)4 is low because the relaxation energy of the Pt(CO)3 fragment is rather high. The low bond energies of the M‐CO bonds are mainly caused by the relatively weak electrostatic attraction and by the comparatively large Pauli repulsion. The σ and π contributions to the covalent M‐CO interactions have about the same strength. The π bonding in the M‐EMe bonds is less than in the M‐CO bonds but it remains an important part of the bond energy. The trends of the electrostatic and covalent contributions to the bond energies and the σ and π bonding in the metal‐ligand bonds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号