首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three aromatic disulfides and their two selected congeners were studied in order to see if they could be initiators or catalysts in a process that aims to tie together the two strands of a DNA double helix. Thermodynamic functions were calculated from first principle molecular computations on deoxyribose models and the disulfide congener. The gas reaction of one of the disulfides turned out to be the closest to the thermoneutral process. Solvation study caused a relatively minor energetic modification. The disulfides were subjected to docking studies, and the stabilities of the complexes obtained were further analyzed by molecular dynamics simulations. Only one of the two atropic disulfide enantiomers was the matching partner of the chiral DNA double helix, and therefore this remained in the major groove of the DNA. The other enantiomer dissociated from the major groove as it was incapable of forming a stable complex with the chiral double helix. A mechanistic scheme for the reaction has been investigated.  相似文献   

2.
The structure of noncovalent complexes of DNA duplex with minor groove binders (mG-binders) has been analyzed by state of the art molecular dynamics (MD) simulations. More than 3.3 micros of MD trajectories (including 4 x 0.5 micros trajectories) were collected for the Dickerson's dodecamer bound to DAPI, Hoechst 33258, and Netropsin. Comparison of these trajectories with control simulations in water allowed us to determine that the extreme dehydration and partial neutralization occurring during electrospray experiments does not produce the disruption of the DNA:mG-binder complexes or the dissociation of the two strands of the duplex. Irrespective of the drug and the simulation conditions the mG-binders remains bound to the DNA near the preferential binding position in aqueous conditions. Large distortions appear in the two DNA strands, which maintain however a memory of the original DNA duplex structure in water, and a general helical-like conformation.  相似文献   

3.
Four of the most well-known, commercially available docking programs, FlexX, GOLD, GLIDE, and ICM, have been examined for their ligand-docking and virtual-screening capabilities. The relative performance of the programs in reproducing the native ligand conformation from starting SMILES strings for 164 high-resolution protein-ligand complexes is presented and compared. Applying only the native scoring functions, the latest versions of these four docking programs were also used to conduct virtual screening for 12 protein targets of therapeutic interest, involving both publicly available structures and AstraZeneca in-house structures. The capability of the four programs to correctly rank-order target-specific active compounds over alternative binders and nonbinders (decoys plus randomly selected compounds) and thereby enrich a small subset of a screening library is compared. Enrichments from the virtual-screening experiments are contrasted with those obtained with alternative 3D shape-matching and 2D similarity database-search methods.  相似文献   

4.
Few novel 4-aminoantipyrine derived Schiff bases and their metal complexes were synthesized and characterized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, (1)H NMR and EPR spectral studies. The binding of the complexes with CT-DNA was analyzed by electronic absorption spectroscopy, viscosity measurement, and cyclic voltammetry. The interaction of the metal complexes with DNA was also studied by molecular modeling with special reference to docking. The experimental and docking results revealed that the complexes have the ability of interaction with DNA of minor groove binding mode. The intrinsic binding constants (K(b)) of the complexes with CT-DNA were found out which show that they are minor groove binders. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pUC19 DNA in the presence of AH(2) (ascorbic acid). Moreover, the oxidative cleavage studies using distamycin revealed the minor groove binding for the newly synthesized 4-aminoantipyrine derived Schiff bases and their metal complexes. Evaluation of antibacterial activity of the complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae exhibited that the complexes have potent biocidal activity than the free ligands.  相似文献   

5.
The dynamics of bound water and ions present in the minor groove of a dodecamer DNA has been decoupled from that of the long-range twisting/bending of the DNA backbone, using the minor groove binder Hoechst 33258 as a fluorescence reporter in the picosecond-resolved time window. The bound water and ions are essential structural components of the minor groove and are destroyed with the destruction of the minor groove when the dodecamer melts at high temperatures and reforms on subsequent cooling of the melted DNA. The melting and rehybridization of the DNA has been monitored by the changes in secondary structure using circular dichroism (CD) spectroscopy. The change in the relaxation dynamics of the DNA has been studied with picosecond resolution at different temperatures, following the temperature-dependent melting and rehybridization profile of the dodecamer, using time-resolved emission spectra (TRES). At room temperature, the relaxation dynamics of DNA is governed by a 40 ps (30%) and a 12.3 ns (70%) component. The dynamics of bound water and ions present in the minor groove is characterized by the 40 ps component in the relaxation dynamics of the probe bound in the minor groove of the dodecamer DNA. Analyses of the TRES taken at different temperatures show that the contribution of this component decreases and ultimately vanishes with the destruction of the minor groove and reappears again with the reformation of the groove. The dynamical behavior of bound water molecules and ions of a genomic DNA (from salmon testes) at different temperatures is also found to be consistent with that of the dodecamer. The longer component of approximately 10 ns in the DNA dynamics is found to be associated with the long-range bending/twisting of the DNA backbone and the associated counterions. The transition from bound water to free water at the DNA surface, indicative of the change in the hydration number associated with each base pair, has also been ascertained in the case of the genomic DNA at different temperatures by employing densimetric and acoustic techniques.  相似文献   

6.
Experiments show that the natural substances phenylpropanoid glycosides (PPGs) extracted from pelicularis spicata are capable of repairing DNA damaged by oxygen radicals. Based on kinetic measurements and experiments on tumor cells, a theoretical study of the interaction between PPG molecules and isolated DNA bases, as well as a DNA fragment has been performed. An interaction mechanism reported early has been refined. The docking calculations performed using junction minimization of nucleic acids (JUMNA) software showed that the PPG molecules can be docked into the minor groove of DNA and form complexes with the geometry suitable for an electron transfer between guanine radical and the ligand. Such complexes can be formed without major distortions of DNA structure and are further stabilized by the interaction with the rhamnosyl side-groups.  相似文献   

7.
Optical spectroscopy and molecular dynamics simulations have been used to study the interaction between a cationic cyanine dye and peptide nucleic acid (PNA)-DNA duplexes. This recognition event is important because it leads to a visible color change, signaling successful hybridization of PNA with a complementary DNA strand. We previously proposed that the dye recognized the minor groove of the duplex, using it as a template for the assembly of a helical aggregate. Consistent with this, we now report that addition of isobutyl groups to the PNA backbone hinders aggregation of the dye when the substituents project into the minor groove but have a weaker effect if directed out of the groove. UV-Visible and circular dichroic spectroscopy were used to compare aggregation on the different PNA-DNA duplexes, while molecular dynamics simulations were used to confirm that the substituents block the minor groove to varying degrees, depending on the configuration of the starting amino acid. In addition to a simple steric blockage effect of the substituent, the simulations suggest that directing the isobutyl group into the minor groove causes the groove to narrow and the duplex to become more rigid, structural perturbations that are relevant to the growing interest in backbone-modified PNA for applications in the biological and materials sciences.  相似文献   

8.
Experiments show that the natural products phenyl propanoid glycosides (PPGs) extracted from the plant Pedicularis spicata are capable of repairing DNA damaged by oxygen radicals. Based on kinetic measurements and experiments on tumor cells, a theoretical study of the interaction between PPG molecule Cistanoside C and telomeric DNA fragment has been carried out. The docking calculations performed using JUMNA software showed that the Cistanoside C could be docked into the minor groove of telomeric DNA and form complexes with the geometry suitable for an electron transfer between guanine radical and the ligand. Such complexes can be formed without major distortions of DNA structure and are further stabilized by the interaction with the saccharide side-groups.  相似文献   

9.

Experiments show that the natural substances phenylpropanoid glycosides (PPGs) extracted from pelicularis spicata are capable of repairing DNA damaged by oxygen radicals. Based on kinetic measurements and experiments on tumor cells, a theoretical study of the interaction between PPG molecules and isolated DNA bases, as well as a DNA fragment has been performed. An interaction mechanism reported early has been refined. The docking calculations performed using junction minimization of nucleic acids (JUMNA) software showed that the PPG molecules can be docked into the minor groove of DNA and form complexes with the geometry suitable for an electron transfer between guanine radical and the ligand. Such complexes can be formed without major distortions of DNA structure and are further stabilized by the interaction with the rhamnosyl side-groups.  相似文献   

10.

Experiments show that the natural products phenyl propanoid glycosides (PPGs) extracted from the plant Pedicularis spicata are capable of repairing DNA damaged by oxygen radicals. Based on kinetic measurements and experiments on tumor cells, a theoretical study of the interaction between PPG molecule Cistanoside C and telomeric DNA fragment has been carried out. The docking calculations performed using JUMNA software showed that the Cistanoside C could be docked into the minor groove of telomeric DNA and form complexes with the geometry suitable for an electron transfer between guanine radical and the ligand. Such complexes can be formed without major distortions of DNA structure and are further stabilized by the interaction with the saccharide side-groups.  相似文献   

11.
The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions.  相似文献   

12.
A number of studies indicate that DNA sequences such as AATT and TTAA have significantly different physical and interaction properties. To probe these interaction differences in detail and determine the influence of charge, we have synthesized three bisbenzimidazole derivatives, a diamidine, DB185, and monoamidines, DB183 and DB210, that are related to the well-known minor groove agent, Hoechst 33258. Footprinting studies with several natural and designed DNA fragments indicate that the synthetic compounds bind at AT sequences in the minor groove and interact more weakly at sites with TpA steps relative to sites without such steps. Circular dichroism spectroscopy also indicates that the compounds bind in the DNA minor groove. Surprisingly, Tm studies as a function of ratio indicate that the monoamidines bind to TTAA sequences as dimers, whereas the diamidine binds as a monomer. Biosensor-surface plasmon resonance (SPR) studies allowed us to quantitate the interaction differences in more detail. SPR results clearly show that the monoamidine compounds bind to the TTAA sequence in a cooperative 2:1 complex but bind as monomers to AATT. The dication binds to both sequences in monomer complexes but the binding to AATT is significantly stronger than binding to TTAA. Molecular dynamics simulations indicate that the AATT sequence has a narrow time-average minor groove width that is a very good receptor site for the bisbenzimidazole compounds. The groove in TTAA sequences is wider and the width must be reduced to form a favorable monomer complex. The monocations thus form cooperative dimers that stack in an antiparallel orientation and closely fit the structure of the TTAA minor groove. The amidine groups in the dimer are oriented in the 5' direction of the strand to which they are closest. Charge repulsion in the dication apparently keeps it from forming the dimer. It instead reduces the TTAA groove width, in an induced fit process, sufficiently to form a minor groove complex. The dimer-binding mode of DB183 and DB210 is a new DNA recognition motif and offers novel design concepts for selective targeting of DNA sequences with a wider minor groove, including those with TpA steps.  相似文献   

13.
The ligand-receptor interaction between some peptidomimetic inhibitors and a class II MHC peptide presenting molecule, the HLA-DR4 receptor, was modeled using some three-dimensional (3D) quantitative structure-activity relationship (QSAR) methods such as the Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Indices Analysis (CoMSIA), and a pharmacophore building method, the Catalyst program. The structures of these peptidomimetic inhibitors were generated theoretically, and the conformations used in the 3D QSAR studies were defined by docking them into the known structure of HLA-DR4 receptor through the GOLD, GLIDE Rigidly, GLIDE Flexible, and Xscore programs. Some of the parameters used in these docking programs were selected by docking an X-ray ligand into the receptor and comparing the root-means-square difference (RMSD) computed between the coordinates of the X-ray and docked structure. However, the goodness of a docking result for docking a series of peptidomimetic inhibitors into the HLA-DR4 receptor was judged by comparing the Spearman's rank correlation coefficient computed between each docking result and the activity data taken from the literature. The best CoMFA and CoMSIA models were constructed using the aligned structures of the best docking result. The CoMSIA was conducted in a stepwise manner to identify some important molecular features that were further employed in a pharmacophore building process by the Catalyst program. It was found that most inhibitors of the training set were accurately predicted by the best pharmacophore model, the Hypo1 hypothesis constructed. The deviation or conflict found between the actual and predicted activities of some inhibitors of both the training and the test sets were also investigated by mapping the Hypo1 hypothesis onto the corresponding structures of the inhibitors.  相似文献   

14.
This study describes the development of a new blind hierarchical docking method, bhDock, its implementation, and accuracy assessment. The bhDock method uses two‐step algorithm. First, a comprehensive set of low‐resolution binding sites is determined by analyzing entire protein surface and ranked by a simple score function. Second, ligand position is determined via a molecular dynamics‐based method of global optimization starting from a small set of high ranked low‐resolution binding sites. The refinement of the ligand binding pose starts from uniformly distributed multiple initial ligand orientations and uses simulated annealing molecular dynamics coupled with guided force‐field deformation of protein–ligand interactions to find the global minimum. Assessment of the bhDock method on the set of 37 protein–ligand complexes has shown the success rate of predictions of 78%, which is better than the rate reported for the most cited docking methods, such as AutoDock, DOCK, GOLD, and FlexX, on the same set of complexes. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

15.
16.
The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.  相似文献   

17.
采用分子动力学模拟了DB921-DNA复合物, 通过7 ns的模拟研究表明: DB921一端的氨基氮原子与一个水分子形成氢键, 同时, 水分子又与DNA的5位A碱基的氮原子形成一个氢键. 水分子在DB921与DNA小沟结合中起了桥连的作用, 使得直线型的芳香二脒化合物DB921通过水桥与DNA小沟结合, 水分子诱导DB921分子与DNA的小沟域构型相适应, 与DNA小沟域的AATTC碱基有较强的结合作用. 在分子水平上提供了DB921与双螺旋DNA相互作用的结构及复合物的动态变化情况, 指出水分子在DNA小沟结合二脒化合物中的识别作用, 为设计出更高生物活性的DNA小沟结合剂提供一定的理论依据.  相似文献   

18.
The new complexes of Cu (II) and Ni (II) of a tridentate Schiff base ligand derived from 9,10‐phenanthrenequinone and p‐toluic hydrazide have been synthesized and characterized by elemental analysis, electrical conductometry, FT‐IR, Mass, NMR and UV–Vis. The DFT calculations were carried out at B3LYP/6‐31G*(d) level for the determination of the optimized structure of the ligand and its complexes. The as‐synthesized compounds were screened for their antimicrobial activity. Also, their binding behavior with fish salmon‐DNA (FS‐DNA) and human serum albumin (HSA) were studied by different kinds of spectroscopic and molecular modeling techniques. The fluorescence data at different temperatures were applied in order to estimate the thermodynamics parameters of interactions of ligand and its complexes with DNA and HSA. The results showed that the as‐made compounds could bind to FS‐DNA and HSA via the groove binding as the major binding mode. According to molecular docking calculation and competitive binding experiments, these compounds bind to the minor groove of DNA and hydrophobic residues located in the subdomain IB of HSA. In addition, the molecular docking results kept in good consistence with experimental data.  相似文献   

19.
采用分子动力学模拟了DNA小沟结合芳香二脒药物DB818形成的复合物. 通过5 ns的模拟研究表明: DB818药物分子可紧密结合在DNA的AATTC小沟区域, 和双螺旋d[CGCGAATTCGCG]2形成稳定的复合物. 由于噻吩硫原子的弱电负性, 使DB818能够以更大的伸展程度与DNA的小沟结合, 形成更强的结合力. DB818苯并咪唑的氮原子能够与DNA 7位和19位T碱基上的氧原子形成两个稳定的氢键, 同时, DB818末端氨基氮原子分别与DNA 的20位T碱基的氧原子和9位C碱基的氧原子形成两个氢键. 另外, 运用MM_PBSA方法计算了DB293-DNA和DB818-DNA复合物的结合自由能, 计算结合能与实验值能较好的吻合, 通过比较其结合自由能, 从热力学能量角度说明了DB818有较大的熵值与较小的焓值贡献, 从而与DNA小沟结合的结合力比DB293强. 本文在分子水平上提供了DB818直接与双螺旋DNA相互作用的结构及复合物的动态变化情况, 为设计出更高生物活性的DNA小沟结合剂提供一定的理论依据.  相似文献   

20.
A new optimization model of molecular docking is proposed, and a fast flexible docking method based on an improved adaptive genetic algorithm is developed in this paper. The algorithm takes some advanced techniques, such as multi-population genetic strategy, entropy-based searching technique with self-adaptation and the quasi-exact penalty. A new iteration scheme in conjunction with above techniques is employed to speed up the optimization process and to ensure very rapid and steady convergence. The docking accuracy and efficiency of the method are evaluated by docking results from GOLD test data set, which contains 134 protein-ligand complexes. In over 66.2% of the complexes, the docked pose was within 2.0 A root-mean-square deviation (RMSD) of the X-ray structure. Docking time is approximately in proportion to the number of the rotatable bonds of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号