首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore folding and ligand recognition of metabolite-responsive RNAs is of major importance to comprehend gene regulation by riboswitches. Here, we demonstrate, using NMR spectroscopy, that the free aptamer of a preQ(1) class I riboswitch preorganizes into a pseudoknot fold in a temperature- and Mg(2+)-dependent manner. The preformed pseudoknot represents a structure that is close to the ligand-bound state and that likely represents the conformation selected by the ligand. Importantly, a defined base pair mutation within the pseudoknot interaction stipulates whether, in the absence of ligand, dimer formation of the aptamer competes with intramolecular pseudoknot formation. This study pinpoints how RNA preorganization is a crucial determinant for the adaptive recognition process of RNA and ligand.  相似文献   

2.
3.
Riboswitches regulate gene expression via specific recognition of cognate metabolites by their aptamer domains, which fold into stable conformations upon ligand binding. However, the recently reported solution and crystal structures of the Bacillus subtilis preQ(1) riboswitch aptamer show small but significant differences, suggesting that there may be conformational heterogeneity in the ligand-bound state. We present a structural and dynamic characterization of this aptamer by solution NMR spectroscopy. The aptamer-preQ(1) complex is intrinsically flexible in solution, with two regions that undergo motions on different time scales. Three residues move in concert on the micro-to-millisecond time scale and may serve as the lid of the preQ(1)-binding pocket. Several Ca(2+) ions are present in the crystal structure, one of which binds with an affinity of 47 ± 2 μM in solution to a site that is formed only upon ligand binding. Addition of Ca(2+) to the aptamer-preQ(1) complex in solution results in conformational changes that account for the differences between the solution and crystal structures. Remarkably, the Ca(2+) ions present in the crystal structure, which were proposed to be important for folding and ligand recognition, are not required for either in solution.  相似文献   

4.
In a recent issue of Science, Greenleaf et al. (2008) report single-molecule force measurements to explore the sequential folding landscape of an adenine riboswitch aptamer domain. This study provides an exceptionally quantitative view of how an RNA molecule folds.  相似文献   

5.
6.
Photolabile nucleotides that disrupt nucleic acid structure are useful mechanistic probes and can be used as tools for regulating biochemical processes. Previous probes can be limited by the need to incorporate multiple modified nucleotides into oligonucleotides and in kinetic studies by the rate-limiting step in the conversion to the native nucleotide. Photolysis of aryl sulfide 1 produces high yields of 5-methyluridine, and product formation is complete in less than a microsecond. Aryl sulfide 1 prevents RNA hairpin formation and complete folding of the preQ(1) class I riboswitch. Proper folding is achieved in each instance upon photolysis at 350 nm. Aryl sulfide 1 is a novel tool for modulating RNA structure, and formation of 5-methyluridine within a radical cage suggests that it will be useful in kinetic studies.  相似文献   

7.
In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg2+‐containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg2+solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering.  相似文献   

8.
9.
A precise tertiary structure must be adopted to allow the function of many RNAs in cells. Accordingly, increasing resources have been devoted to the elucidation of RNA structures and the folding of RNAs. 2-Aminopurine (2AP), a fluorescent nucleobase analogue, can be substituted in strategic positions of DNA or RNA molecules to act as site-specific probe to monitor folding and folding dynamics of nucleic acids. Recent studies further demonstrated the potential of 2AP modifications in the assessment of folding kinetics during ligand-induced secondary and tertiary RNA structure rearrangements. However, an efficient way to unambiguously identify reliable positions for 2AP sensors is as yet unavailable and would represent a major asset, especially in the absence of crystallographic or NMR structural data for a target molecule. We report evidence of a novel and direct correlation between the 2'-OH flexibility of nucleotides, observed by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing and the fluorescence response following nucleotide substitutions by 2AP. This correlation leads to a straightforward method, using SHAPE probing with benzoyl cyanide, to select appropriate nucleotide sites for 2AP substitution. This clear correlation is presented for three model RNAs of biological significance: the SAM-II, adenine (addA), and preQ(1) class II (preQ(1)cII) riboswitches.  相似文献   

10.
We present a (13)C-based isotope labeling protocol for RNA. Using (6-(13)C)pyrimidine phosphoramidite building blocks, site-specific labels can be incorporated into a target RNA via chemical oligonucleotide solid-phase synthesis. This labeling scheme is particularly useful for studying milli- to microsecond dynamics via NMR spectroscopy, as an isolated spin system is a crucial prerequisite to apply Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion type experiments. We demonstrate the applicability for the characterization and detection of functional dynamics on various time scales by incorporating the (6-(13)C)uridine and -cytidine labels into biologically relevant RNAs. The refolding kinetics of a bistable terminator antiterminator segment involved in the gene regulation process controlled by the preQ(1) riboswitch class I was investigated. Using (13)C CPMG relaxation dispersion NMR spectroscopy, the milli- to microsecond dynamics of the HIV-1 transactivation response element RNA and the Varkud satellite stem loop V motif was addressed.  相似文献   

11.
Riboswitch‐mediated control of gene expression depends on ligand binding properties (kinetics and affinity) of its aptamer domain. A detailed analysis of interior regions of the aptamer, which affect the ligand binding properties, is important for both understanding natural riboswitch functions and for enabling rational design of tuneable artificial riboswitches. Kinetic analyses of binding reaction between flavin mononucleotide (FMN) and several natural and mutant aptamer domains of FMN‐specific riboswitches were performed. The strong dependence of the dissociation rate (52.6‐fold) and affinity (100‐fold) on the identities of base pairs in the aptamer stem suggested that the stem region, which is conserved in length but variable in base‐pair composition and context, is the tuning region of the FMN‐specific aptamer. Synthetic riboswitches were constructed based on the same aptamer domain by rationally modifying the tuning regions. The observed 9.31‐fold difference in the half‐maximal effective concentration (EC50) corresponded to a 11.6‐fold difference in the dissociation constant (KD) of the aptamer domains and suggested that the gene expression can be controlled by rationally adjusting the tuning regions.  相似文献   

12.
13.
14.
The present study reports the proof of principle of a reagentless aptameric sensor based on surface-enhanced Raman scattering (SERS) spectroscopy with "signal-on" architecture using a model target of cocaine. This new aptameric sensor is based on the conformational change of the surface-tethered aptamer on a binding target that draws a certain Raman reporter in close proximity to the SERS substrate, thereby increasing the Raman scattering signal due to the local enhancement effect of SERS. To improve the response performance, the sensor is fabricated from a cocaine-templated mixed self-assembly of a 3'-terminal tetramethylrhodamine (TMR)-labeled DNA aptamer on a silver colloid film by means of an alkanethiol moiety at the 5' end. This immobilization strategy optimizes the orientation of the aptamer on the surface and facilitates the folding on the binding target. Under optimized assay conditions, one can determine cocaine at a concentration of 1 muM, which compares favorably with analogous aptameric sensors based on electrochemical and fluorescence techniques. The sensor can be readily regenerated by being washed with a buffer. These results suggest that the SERS-based transducer might create a new dimension for future development of aptameric sensors for sensitive determination in biochemical and biomedical studies.  相似文献   

15.
In vitro selection was used to identify deoxyribozymes that ligate two RNA substrates. In the ligation reaction, a 2'-5' RNA phosphodiester linkage is created from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. The new Mg(2+)-dependent deoxyribozymes provide 50-60% yield of ligated RNA in overnight incubations at pH 7.5 and 37 degrees C, and they afford 40-50% yield in 1 h at pH 9.0 and 37 degrees C. Various RNA substrate sequences may be joined by simple Watson-Crick covaration of the DNA binding arms that interact with the two RNA substrates. The current deoxyribozymes have some RNA substrate sequence requirements at the nucleotides immediately surrounding the ligation junction (either UAUA GGAA or UAUN GGAA, where the arrow denotes the ligation site and N equals any nucleotide). One of the new deoxyribozymes was used to prepare by ligation the Tetrahymena group I intron RNA P4-P6 domain, a representative structured RNA. Nondenaturing gel electrophoresis revealed that a 2'-5' linkage between nucleotides A233 and G234 of P4-P6 does not disrupt its Mg(2+)-dependent folding (DeltaDeltaG degrees ' < 0.2 kcal/mol). This demonstrates that a 2'-5' linkage does not necessarily interfere with structure in a folded RNA. Therefore, these non-native linkages may be acceptable in modified RNAs when structure/function relationships are investigated. Deoxyribozymes that ligate RNA should be particularly useful for preparing site-specifically modified RNAs for studies of RNA structure, folding, and catalysis.  相似文献   

16.
We describe a selective and mild chemical approach for controlling RNA hybridization, folding, and enzyme interactions. Reaction of RNAs in aqueous buffer with an azide‐substituted acylating agent (100–200 mm ) yields several 2′‐OH acylations per RNA strand in as little as 10 min. This poly‐acylated (“cloaked”) RNA is strongly blocked from hybridization with complementary nucleic acids, from cleavage by RNA‐processing enzymes, and from folding into active aptamer structures. Importantly, treatment with a water‐soluble phosphine triggers a Staudinger reduction of the azide groups, resulting in spontaneous loss of acyl groups (“uncloaking”). This fully restores RNA folding and biochemical activity.  相似文献   

17.
We present the access to [5-19F, 5-13C]-uridine and -cytidine phosphoramidites for the production of site-specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5-19F, 5-13C]-pyrimidine labels into five RNAs—the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ϵ (hHBV ϵ) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre-microRNA (miRNA) 21 and the 59 nt full length pre-miRNA 21. The main stimulus to introduce the aromatic 19F–13C-spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole-dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13C–19F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5-19F, 5-13C]/[5-19F] pyrimidine labeling. For the 61 nt hHBV ϵ we find a beneficial 19F–13C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19F, 13C]-labeling of the SAM VI aptamer domain and the pre-miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.  相似文献   

18.
The tetracycline aptamer is an in vitro selected RNA that binds to the antibiotic with the highest known affinity of an artificial RNA for a small molecule (Kd approximately 0.8 nM). It is one of few aptamers known to be capable of modulating gene expression in vivo. The 2.2 A resolution cocrystal structure of the aptamer reveals a pseudoknot-like fold formed by tertiary interactions between an 11 nucleotide loop and the minor groove of an irregular helix. Tetracycline binds within this interface as a magnesium ion chelate. The structure, together with previous biochemical and biophysical data, indicates that the aptamer undergoes localized folding concomitant with tetracycline binding. The three-helix junction, h-shaped architecture of this artificial RNA is more complex than those of most aptamers and is reminiscent of the structures of some natural riboswitches.  相似文献   

19.
BACKGROUND: Anti-idiotype approaches are based on the assumption that an antibody recognising a ligand can be structurally related to the receptor. Recently we have generated anti-idiotype RNA aptamers designed to mimic the human immunodeficiency virus-1 (HIV-1) Rev nuclear export signal (NES). Nuclear injection of either NES-peptide conjugates or aptamer causes the inhibition of Rev-mediated export. This implied that NES mimics and export substrate might compete for binding to the NES receptor. The mechanism of inhibition, however, is unknown. RESULTS: The interaction between the export aptamer and CRM1 was characterised in vitro. The aptamer binds specifically to CRM1 and this interaction is sensitive to competition by Rev NES-peptide conjugates. The recognition domain of CRM1 has been mapped and includes residues found previously to affect binding of leptomycin B, a fungicide interfering with nuclear export. CONCLUSIONS: Inhibition of Rev-mediated export in vivo by export aptamers appears to result from the binding of the aptamers to the NES-recognition domain of CRM1. This observation demonstrates that anti-idiotype RNA can mimic faithfully structural and functional properties of a protein and can be used to map ligand-binding domains of receptors.  相似文献   

20.
We present the access to [5‐19F, 5‐13C]‐uridine and ‐cytidine phosphoramidites for the production of site‐specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5‐19F, 5‐13C]‐pyrimidine labels into five RNAs—the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ? (hHBV ?) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre‐microRNA (miRNA) 21 and the 59 nt full length pre‐miRNA 21. The main stimulus to introduce the aromatic 19F–13C‐spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole‐dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13C–19F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5‐19F, 5‐13C]/[5‐19F] pyrimidine labeling. For the 61 nt hHBV ? we find a beneficial 19F–13C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19F, 13C]‐labeling of the SAM VI aptamer domain and the pre‐miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号