首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new and accurate method for the determination of uranium isotopes (238U, 234U and 235U) in environmental samples by alpha-spectrometry has been developed. Uranium is preconcentrated from filtered water samples by coprecipitation with iron(III) hydroxide at pH 9-10 using an ammonia solution and the precipitate is dissolved in HNO3 and mineralized with H2O2 and HF; uranium in biological samples is ashed at 600 °C, leached with Na2CO3 solution and mineralised with HNO3, HF and H2O2; uranium in soil samples is fused with Na2CO3 and Na2O2 at 600 °C and leached with HCl, HNO3 and HF. The mineralized or leaching solution in 2M HNO3 is passed through a Microthene-TOPO (tri-octyl-phosphine oxide) column; after washing, uranium is directly eluted into a cell with ammonium oxalate solution, electrodeposited on a stainless steel disk and measured by alpha-spectrometry. The lower limits of detection of the method is 0.37 Bq.kg-1 (soil) and 0.22 mBq.l-1 (water) for 238U and 234U and 0.038 Bq.kg-1 (soil) and 0.022 mBq.l-1 (water) for 235U if 0.5 g of soil and 1 litre of water are analyzed. Five reference materials supplied by the IAEA have been analyzed and reliable results are obtained. Sample analyses show that, the 238U, 234U and 235U concentrations are in the ranges of 0.30-103, 0.49-135 and 0.02-4.82 mBq.l-1 in waters, of 1.01-7.14, 0.85-7.69 and 0.04-0.32 Bq.kg-1 in mosses and lichens, and of 25.6-53.1, 26.4-53.8 and 1.18-2.48 Bq.kg-1 in sediments. The average uranium yields for waters, mosses, lichens and sediments are 74.5±9.0%, 80.5±8.3%, 77.8±4.9% and 89.4±9.7%, respectively.  相似文献   

2.
Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of Pu-isotopes in urine samples using anion exchange resin and 236Pu tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of plutonium along with calcium phosphate. Separation of Pu was carried out by Amberlite, IRA-400, anion exchange resin. Pu-fraction was electrodeposited and activity estimated using tracer recovery by alpha spectrometer. Twenty routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 74–96% with a mean and standard deviation of 85 and 6% respectively.  相似文献   

3.
In the paper was presented results of our study about uranium 234U and 238U radioactivity in the marine birds samples, collected in the Polish area of the southern Baltic Sea. We chose 11 species of sea birds: three species permanently residing at southern Baltic, four species of wintering birds and three species of migrating birds. The obtained results indicated that uranium is very irregularly distributed in organs and tissues of marine birds. The highest uranium content is characterized in liver, rest of viscera and feathers, the smallest in skin and muscles. The uranium concentration was higher for carnivorous species (long-tailed duck (C. hyemalis), common eider (S. mollissima), lower for species eating fish (great cormorant (P. carbo), common guillemot (U. aalge), red-throated diver (G. stellata) and razorbill (A. tarda)), but the biggest amounts for herbivorous species [tufted duck (A. fuligula) and eurasian coot (F. atra)]. About 63–67% of uranium, which was located in feathers of two species of marine birds: razorbill (A. tarda) and long-tailed duck (C. hymealis), was apparently adsorbed, which suggests that uranium adsorption on the feathers may be an important transfer from air to water.  相似文献   

4.
Summary The measurement of radioactivity concentrations in excreta is an important tool for the monitoring of possible radionuclide intakes by occupationally exposed workers. For this purpose, a radiochemical procedure for the determination of alpha-emitting isotopes of uranium in excreta has been optimized. The main steps involved in this procedure are pre-concentration, dissolution of sample, separation by ion-exchange resin, electrodeposition and alpha-spectroscopy. 232U tracer is used to monitor chemical recoveries and correct the results to improve precision and accuracy. The quality control of radiochemical analysis in urine and faecal samples has been performed with participation in intercomparison exercises. The results obtained from these samples, with chemical recoveries (80-95%), are shown to be highly consistent. The method offers good prospects to be applied in routine monitoring programme of workers.  相似文献   

5.
A sensitive and accurate method for determination of radium isotopes in soil samples by α-spectrometry has been developed 225Ra, which is in equilibrium with its mother 229Th, was used as a yield tracer. Radium in soil samples was fused together with Na2CO3 and Na2O2 at 600 °C, leached with HNO3, HCl and HF, preconcentrated by coprecipitation with BaSO4, separated from uranium, thorium and iron using a Microthene-TOPO chromatographic column, isolated from barium in a cation-exchange resin column using 0.05M 1,2-cyclohexylene-dinitrilo-tetraacetic acid monohydrate as an eluant, electrodeposited on a stainless steel disc, and counted by α-spectrometry. The detection limit of the method is 0.43 Bq·kg−1 for 226Ra, 228Ra and 224Ra if 0.50 g of soil sample are analyzed. The method was checked with two certified reference materials supplied by the IAEA, and reliable results were obtained Fourteen soil samples collected from the refractory industry in Italy were also analyzed. The mean radiochemical yields for radium were 85.7±4.3%, and the obtained radium concentrations in the soil samples were in the range of 8.08–3878 Bq·kg−1 for 226Ra, of 1.60–678 Bq·kg−1 for 228Ra and 1.25–550 Bq·kg−1 for 224Ra, with 228Ra/226Ra and 224Ra/226Ra ratios ranged from 0.159–0.821 and from 0.142 to 0.525, respectively.  相似文献   

6.
The aim of the present work was to determine the concentration of radionuclides in all kinds of tea available at the local Egyptian market. Radioactivity of the nuclides 238U, 226Ra, 210Pb, 228Th, 232Th, 226Ra, 137Cs and 40K were measured in tea by direct γ-ray spectrometry using HPGe detector and their mean values were 16.0±5.3, 3.1±0.7, 34.3±3.4, 3.4±1.2, 3.0±0.6, 3.1±0.8, 0.9±0.2 and 623±25 Bq·kg−1, respectively.  相似文献   

7.
Summary A method for the determination of low-level radium isotopes in mineral and environmental water samples by alpha-spectrometry has been developed. Radium-225, which is in equilibrium with its mother 229Th, was used as a yield tracer. Radium were preconcentrated from water samples by coprecipitation with BaSO4and iron (III) hydroxide at pH 8-9 using ammonia solution, then isolated from uranium, thorium and iron using a Microthene-TOPO chromatography column at 8M HCl, separated from barium in a cation-exchange resin column using 0.05M 1,2-cyclohexylenedinitrilotetraacetic acid monohydrate at pH 8.5 as an eluant, and finally electrodeposited on a stainless steel disc in a medium of 0.17M (NH4)2C2O4at pH 2.6 and current density of 400 mA. cm-2, and counted bya-spectrometry. Optimum experimental conditions for radium separation, purification and electrodeposition have been studied and discussed in the paper. The lower limits of detection of the method are 0.11 mBq. l-1for 226Ra, 228Ra and 224Ra, respectively, if 2 l of water are analyzed. The method has been checked with a certified reference material IAEA-Soil-6 supplied by the International Atomic Energy Agency and reliable results were obtained. Eighteen water samples collected in Italy have been analyzed with the method, the mean radiochemical yields for radium were 86.2±6.5%. The obtained radium concentrations were in the range of 0.50-60.8 mBq. l-1for 226Ra, of 0.10-25.7 mBq. l-1for 228Ra, and of£LLD-7.97 mBq. l-1for 224Ra. The 228Ra/226Ra and 224Ra/226Ra ratios were in the range of 0.189-4.45 and£LLD-0.941, respectively.  相似文献   

8.
The determination of isotopes of uranium by alpha spectrometry in different environmental components (sediments, soil, water, plants and phosphogypsum) is presented and discussed in this paper. The alpha spectrometry is a very convenient and good technique for activity concentration of natural uranium isotopes (234U, 235U, 238U) in environmental samples and provides the most accurate determination of isotopic activity ratios between 234U and 238U. The analysis were provided information about possible sources of high concentrations of uranium in the examined sites determined by anthropogenic sources. The calculation of values 234U/238U in all analyzed samples was applied to identifying natural or anthropogenic uranium origin. Activity concentration of uranium isotopes in analyzed environmental samples shows that measurement of uranium levels is of great importance for environmental and safety assessment especially in contaminated areas (phosphogypsum waste heap).  相似文献   

9.
Singh NP  Wrenn ME 《Talanta》1983,30(4):271-274
A radiochemical procedure has been developed for the determination of alpha-emitting isotopes of uranium ((238)U, (235)U and (234)U) in soft tissues. Known amounts of sample are spiked with (232)U internal tracer and wet-ashed. Uranium is co-precipitated with iron hydroxide as carrier, and extracted into 20% trilaurylamine solution in xylene after dissolution of the precipitate in 10M hydrochloric acid. The uranium, after stripping into an aqueous phase, is electro-deposited onto a platinum disc and counted by alpha-spectrometry. The radiochemical recovery ranges from 60 to 85% for bovine liver samples. The average radiochemical recoveries for human tissues vary from 53 to 78%.  相似文献   

10.
In order to improve the selectivity of the uranium isotopes determination in environmental samples, further studies have been carried out, including (1) interference of 210Po with uranium isotope determination, (2) distribution coefficients of polonium between 5% TOPO in toluene and aqueous hydrochloric and nitric acids, (3) decontamination factor of uranium from polonium of the recommended procedure, and (4) leaching effect comparison of two different leaching procedures in a lichen sample. Based on the new findings, a more accurate extraction chromatographic/ a-spectroscopy method has been developed. For the method's validation, four kinds of reference materials supplied by the IAEA have been tested. It is observed that nearly all the 238U, 234U and 235U concentrations obtained are in good agreement with the recommended or information values, showing that the method can give reliable results. A comparison with existing uranium determination methods has also been made. It is concluded that due to involving preconcentration and chemical separation, the extraction chromatographic/a-spectroscopy method is a more selective, very sensitive and accurate, and low cost method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A new procedure for the radiochemical measurements of thorium, uranium and plutonium in atmospheric samples is described. Analysis involves coprecipitation of these actinides with iron hydroxide from a 40-to 50-dm3 sample of rainwater, followed by radiochemical separation and purification procedures by the use of ion exchange chromatography (Dowex AG1×8) and solvent extraction. The new procedure enables one to determine the isotopes of thorium, uranium and plutonium, which are found in rainwater at extremely low concentrations, with a chemical yield ranging from 60 to 80%.  相似文献   

12.
郭志英  梁月琴  崔晓磊  于水 《分析化学》2012,(12):1865-1870
在DU染毒动物模型基础上,采用ICP-MS技术同时测定各组织中铀浓度和235U/238U比值,分析DU在体内的分布和代谢规律;提取纯化肝肾组织中的基因组DNA,ICP-MS检测与DNA结合的DU浓度和235U/238U。以Pt为内标元素,补偿基体效应,组织中铀的检出限为0.0019~0.0981μg/kg;精密度(RSD)为0.92%~2.13%,回收率在100%±10%内。ICP-MS对贫铀气溶胶中235U/238U检测结果与经典的α谱仪检测结果相吻合。DNA样品采用中性溶液稀释,DNA中铀元素检出限为0.0016μg/kg DNA,回收率为98.3%±7.3%。样本测定结果显示,肾脏和骨骼对贫铀的蓄积能力最强,脑组织几乎不受贫铀影响,其它组织的DU蓄积能力介于二者之间。在肾、肝组织中,DU可以与DNA发生结合,与肾DNA结合更持久。组织中235U/238U随染毒铀同位素组成和浓度发生规律性改变。铀浓度与235U/238U均可以作为衡量核素污染类型和程度的敏感指标。  相似文献   

13.
In the method, soil was fused together with Na2CO3 and Na2O2 at 600 °C, uranium and thorium were leached out with HCl, HNO3 and HF, and HClO4 was used to eliminate the residual HF through evaporation. The leaching solution (2 M HNO3) was passed through a Microthene-TOPO column to adsorb uranium and thorium. Thorium was first eluted with 2 M HCl and electrodeposited in 0.025 M H2C2O4 + 0.15 M HNO3 on a stainless steel disc. Uranium was eluted with a 0.025 M ammonium oxalate solution and also electrodeposited. Both thorium and uranium isotopes on the discs were measured separately by α-spectrometry.  相似文献   

14.
In 2007/2008 the Institute for Reference Materials and Measurements (IRMM) organised an interlaboratory comparison (ILC) on the determination of 226Ra, 228Ra, 234U and 238U activity concentrations in mineral water. This paper describes the determination of the reference values for the activity concentrations of 234U and 238U by radiochemical separation and α-particle spectrometry performed at two independent laboratories. The experimental uncertainty of the reference values is discussed in detail.  相似文献   

15.
Summary The paper presents a procedure to prepare soil samples for U and Th isotope measurement by alpha-spectrometry after coprecipitation with LaF3. In this procedure the reduction of U(VI) to U(IV) was performed by Zn metal in 4M HCl solution. The recoveries of chemical separation equal to eU-chemistry = 78±4% for uranium and eTh-chemistry = 82±4% for thorium. Canberra alpha-spectrometer was used with PIPS detectors of A-1200-37-AM Model of 1200 mm2 active area. The counting efficiency of the measuring system equals to ecounting = 18% and the total efficiencies were eU = ecounting .eU-chemistry = 14.0±0.7% for uranium and eTh = ecounting .eTh-chemistry = 14.7±0.7% for thorium. The recoveries of chemical separation were rather high (about 80%), that leads to the use of a small weight of soil sample (about 0.5 g). The efficiencies were also stable, that allows analyzing the soil sample without using radiotracers. They are advantages of the sample preparation procedure of this work.  相似文献   

16.
17.
A method is described for the determination of228Th,230Th, and232Th in environmental samples from uranium mining and milling operations. The analytical procedure is based on the direct determination of228Th in the sample by high resolution γ-spectrometry followed by extraction and purification of the thorium fraction using high molecular weight amines and an anion-exchange technique, respectively, prior to α-spectrometry to determine isotopic ratios. The lowest level of detection for each thorium isotope is 0.01 pCi/g for solid samples and 20 pCi/l for aqueous samples. Replicate analyses of a typical mine waste stream gave a standard deviation of ±3% for228Th. Standard deviations of the230Th and232Th increased to ±11% apparently due to traces of210Po interfering in the α-spectrometry.  相似文献   

18.
19.
20.
Radioisotopes of uranium, thorium and plutonium in water, soil and fertilizer samples, have been chemically separated and determined by alpha-spectrometry method. Radiochemical procedure involving ion-exchange, enabled to determine these isotopes in very low concentrations (under 50 Bq/g).232U,229Th and238Pu were used as a tracers for radiochemical yield recoveries (up to 90%). Thin layer sources have been obtained by electrodeposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号