首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Fung YF  Lau KM 《Electrophoresis》2001,22(11):2192-2200
A new analytical procedure is developed using a strong complexing agent, 1,10-phenanthroline (Phen), for direct UV detection of Zn, Mn, Cu, Co, Cd, and Fe at microg/L concentrations in environmental water samples. The metal chelates formed showed different electrophoretic mobilities and solved the comigration problem for capillary electrophoresis (CE) separation of free metal ions. To obtain stable metal-Phen chelates during the capillary zone electrophoresis (CZE) run, both pre-column and on-column complexation are required and threefold excess of Phen over metal ions should be added to the sample. The optimized background electrolyte (BGE) consists of 30 mM hydroxylamine hydrochloride and 0.1% methanol at pH 3.6. Under hydrodynamic sampling, CE run at + 20 kV in 65 cm x 0.05 mm ID fused-silica column with detection at 265 nm, baseline separation, satisfactory working ranges (10 microg/L to 5.5 mg/L), sensitive detection limits (1-3 microg/L), good repeatability for migration times (relative standard deviation, RSD 0.36-0.81%, n = 5), peak area (RSD 3.2-4.2%, n = 5) and peak height (RSD 3.2-4.5%, n = 5) were obtained for the metal cations investigated. The reliability of the method was established by parallel determination using the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method giving results within statistical variation. The procedure developed is shown to provide a quick, sensitive, precise, and economic method for simultaneous determination of metal cations that can form stable chelates with Phen.  相似文献   

2.
He J  Chen S  Yu Z 《Journal of chromatography. A》2002,973(1-2):197-202
A new capillary electrophoresis method for determining poly-beta-hydroxybutyric acid (PHB) in Bacillus thuringiensis was established. Poly-beta-hydroxybutyric acid in samples was hydrolyzed by sulphuric acid and neutralized by Ba(OH)2. The content of produced beta-hydroxybutyrate was then determined by capillary zone electrophoresis (CZE) with indirect UV detection at 254 nm. With 5 mM p-hydroxybenzoate and 0.5 mM tetradecyltrimethylammonium bromide (TTAB) at pH 8.0 as carrier electrolyte, beta-hydroxybutyrate can be determined within 6 min. Standard regression equation was made by beta-hydroxybutyrate, and the linear range was 2-1000 microg/ml. The relative standard deviations (RSDs) for migration time and peak area are both less than 1.0%. The detection limit for beta-hydroxybutyrate was 0.2 microg/ml, which is two to three orders of magnitude lower than that of the gas chromatography (GC) method. The capillary electrophoresis method was successfully applied to determine poly-beta-hydroxybutyric acid in fermentation broth and single colony. The added standard recovery was 96%.  相似文献   

3.
We describe capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) for the determination of low concentrations of nitrite and nitrate ions in seawater. Bromide-free artificial seawater was adopted as background electrolyte (BGE) to eliminate the interference of high concentrations of salts in seawater. To reverse the electroosmotic flow (EOF), 3 mM cetyltrimethylammonium chloride (CTAC) was added to the BGE. High concentrations of chlorate were added to sample solutions as the terminating ion to generate the ITP process before the CZE separation. In general, the stacking effect increased with increasing amounts of chlorate injected into the capillary. The limits of detection (LODs) for nitrite and nitrate were 0.063 and 0.033 mg/L when the chlorate concentration was 600 and 200 mM, respectively; these were half of those obtained by CZE without the transient ITP. The LODs were obtained at a signal to noise ratio (S/N) of 3. The relative standard deviations (RSD, n = 10) of the peak areas for these ions were 3.2 and 2.9%. The RSDs of peak heights for these ions were 1.6 and 2.1%. The RSDs of migration times for these ions were 0.67 and 0.46%.  相似文献   

4.
We describe an application of capillary zone electrophoresis (CZE) with transient isotachophoresis (ITP) as the on-line concentration procedure for the determination of iodide in seawater. The effective mobility of iodide was decreased by the addition of 10 mM cetyltrimethylammonium chloride (CTAC) to an artificial seawater background electrolyte (BGE) so that transient ITP functioned and iodide was separated from other coexisting anions such as bromide, nitrite, and nitrate in seawater samples. After sample injection, 600 mM acetate was separately injected into the capillary as the terminating ion to generate transient ITP. The limit of detection (LOD) for iodide was 3.0 microg/L. The LOD was obtained at a signal-to-noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area, peak height, and migration time for iodide were 2.9, 2.1, and 0.6%. The proposed method was applied to the determination of iodide in seawater collected around the Osaka Bay. The results obtained by use of the calibration graph were agreed with those obtained by the addition of the standard solutions for iodide.  相似文献   

5.
Two simple, rapid, and efficient methods for the analysis of seven antifungal compounds have been developed by capillary zone electrophoresis. Resolutions higher than 1.5 were obtained using 0.025 M phosphate buffer (pH 2.30) (analysis time close to 9 min) or 0.2 M formic acid (pH 2.15) (analysis time close to 6 min), with an applied voltage of 20 kV and a temperature of 30 degrees C. The highest sensitivity and selectivity can be obtained using phosphate buffer but the shortest analysis times are achieved in the formic system. The analytical characteristics of the optimized methods were investigated. The reproducibility obtained for migration times (RSD(n = 10) < or = 1.0%) and peak areas (RSD(n = 10) < or = 4.3%) was acceptable, but better reproducibilities were obtained when verapamil was used as internal standard (RSD(n = 10) < 0.4% for relative migration times and RSD(n = 10) < or = 2.2% for peak area ratios). The lowest limit of detection was obtained for clotrimazole (0.12 microg/ml) and the highest for fluconazole and voriconazole (0.90 microg/ml). The lowest and the highest limits of quantitation were, respectively, 0.40 microg/ml for clotrimazole and 3.00 microg/ml for fluconazole and voriconazole.  相似文献   

6.
We describe a combination of selected ions as a terminating ion which is useful for transient isotachophoresis (ITP) in capillary zone electrophoresis (CZE) for the determination of nitrite and nitrate in seawater. In addition to 150 mM sulfate as the principal terminating ion, 10 mM bromate was added to a sample solution as the additional terminating ion. Artificial seawater containing 3 mM cetyltrimethylammonium chloride (CTAC) was adopted as a background electrolyte (BGE). The limits of detection (LODs) for nitrite and nitrate were 2.2 and 1.0 microg/L (as nitrogen), respectively. The LODs were obtained at a signal to noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area for these ions were 1.9 and 1.4%. The RSDs of peak height were 1.7 and 1.9%, the RSDs of migration time 0.11%. The proposed method was applied to the determination of nitrite and nitrate in a proposed certified reference material for nutrients in seawater, MOOS-1, distributed by the National Research Council of Canada (NRC). The results almost agreed with the assigned tolerance interval.  相似文献   

7.
A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene and poly(vinylsulfonate) (PVS). A stable dynamic coating was formed when PVS was added to the background electrolyte. Thus, when the PVS concentration in the background electrolyte was optimized for CZE (0.01%), the EOF differed less than 0.3% after 54 runs. The electroosmotic mobility in the coated capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2-9. In addition to fast CZE and MEKC separations at low pH, analysis of the alkaline compounds by CE-MS was also possible.  相似文献   

8.
A simple, rapid, and accurate method for the separation and determination of honokiol and magnolol in Magnolia officinalis and related herbal medicines was developed by combination of flow injection (FI) and capillary zone electrophoresis (CZE). The analysis was carried out using an unmodified fused-silica capillary (50-μm I.D.; total length 7.5 cm; effective length 4.5 cm). A series of optimization steps afforded the following conditions: the sample solvent consisted of 150 mM NaOH and a running buffer composed of 10 mM sodium tetraborate/10 mM sodium dihydrogenphosphate (NaH2PO4) at pH 12 was applied for the separation of the analytes. The separation could be achieved within 5 min with a sample throughput rate of up to 28 h−1. The repeatability (defined as the relative standard deviation, RSD) for honokiol and magnolol was 2.0% and 1.6% with peak area evaluation, 3.6% and 2.0% with peak height evaluation, and 2.0% and 1.4% with migration time evaluation, respectively. Regression equations revealed linear relationships (r = 0.9991–0.9998) between the peak area of each analyte and the concentration.  相似文献   

9.
Summary Carnosol, carnosic acid, rosmarinic acid and other not identified phenolic compounds were separated by capillary zone electrophoresis (CZE) using a 40-cm long capillary and a 20 mM tetraborate buffer (pH 9.0), within 3 min. A UV-diode array detector was employed to collect spectra of phenolic compounds. The effect of some separation parameters on peak resolution and migration time of phenolic species present in a refined rosemary extract was studied. The repeatability of the method was also investigated: the intraday relative standard deviation on total peak area was less than 4%, while the intraday relative standard deviation on migration time was less than 0.6%. Moreover the CZE method showed good sensitivity (0.0007 μg mL1 for carnosic acid and rosmarinic acid). Carnosic acid and rosmarinic acid have been quantified in different commercial extracts of rosemary. Finally, the optimized method was also applied to evaluate the recovery of these two compounds when different organic solvents were employed during the extraction procedure.  相似文献   

10.
毛细管区带电泳法测定葡萄籽中儿茶素类化合物   总被引:9,自引:0,他引:9  
李奕  高军涛  张志玲  刘虎威  赵保路 《色谱》2000,18(6):491-494
 采用毛细管区带电泳法测定了 10种中国产葡萄籽中的 4个主要儿茶素类化合物 :(+)儿茶素、(- )表儿茶素、(± )表没食子儿茶素、(± )表儿茶素没食子酸酯的含量。在 0 0 2mol/L硼砂和 0 0 0 5mol/L磷酸盐的混合缓冲体系 (pH 10 0 )的背景缓冲液中 ,4个化合物在 10min内取得了令人满意的分离。迁移时间的重现性(RSD)小于 2 % ,峰面积的重现性 (RSD)小于 5 %。在质量浓度为 0 0 0 5g/L~ 0 5 g/L时 ,线性相关系数大于0 995。检测限为 3mg/L~ 10mg/L。该方法简单、快速、准确 ,可作为葡萄籽分析和药用开发过程中分析儿茶素类化合物的有效方法推广使用。  相似文献   

11.
Five flavonoids (hyperoside, isoquercitrin, quercitrin, quercetin and rutin) were separated and determined in extracts of Hypericum perforatum leaves or flowers by capillary zone electrophoresis (CZE) with isotachophoretic (ITP) sample pre-treatment using on-line column coupling configuration. The background electrolyte (BGE) used in the CZE step was different from the leading and terminating ITP electrolytes but all the electrolytes contained 20% (v/v) of methanol. The optimal leading electrolyte was 10 mM HCl of pH* approximately 7.2 (adjusted with Tris) and the terminating electrolyte was 50 mM H3BO3 of pH* approximately 8.2 (adjusted with barium hydroxide). This operational system allowed to concentrate and pre-separate selectively the flavonoid fraction from other plant constituents before the introduction of the flavonoids into the CZE capillary. The BGE for the CZE step was 50 mM Tris buffer of pH* approximately 8.75 containing 25 mM N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid as co-ion and 55 mM H3BO3 as complex-forming agent. The ITP-CZE method with spectrophotometric detection at 254 nm was suitable for the quantitation of the flavonoids in real natural samples; kaempferol was used as internal standard. The limit of detection for quercetin-3-O-glycosides was 100 ng ml(-1) and calibration curves were rectilinear in the range 1-10 microg ml (-1) for most of the analytes. The RSD values ranged between 0.9 and 2.7% (n=3) when determining approximately 0.07-1.2% of the individual flavonoids in dried medicinal plants.  相似文献   

12.
Capillary zone electrophoresis (CZE) was used for the rapid determination of 5-fluorouracil (5-FU) and 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) in pancreatic cancer cell line (PANC-1), culture medium, plasma and pancreatic tissue. The assay is based upon protein precipitation with acetonitrile followed by a 9-min CZE analysis of the supernatant in an uncoated fused-silica capillary employing a borate buffer and on-column absorbance detection at 265 nm. Using 50 microl of sample, 5-FU levels between 4.12 and 132 microg/ml (31.7-1000 microM) were found to provide linear calibration graphs. Intra-day and inter-day RSD values evaluated from peak height ratios (n=5) were <7.6 and <8.8%, respectively. Corresponding RSD values of detection times (n=7) were <1 and <1.5%, respectively. The limits of detection for 5-FU and FdUMP were 1.72 and 5.29 microg/ml, respectively. As application, the accumulation of 5-FU by PANC-1 cells over a 4-h time period was investigated. Having a culture medium concentration of 100 microg/ml, the 5-FU cell content was estimated to become equal to that of the surrounding medium (i.e., 100 microg/ml or 3.61 fmol per cell with a volume of 4.7 pl) within that time period. The sensitivity of the assay was sufficient for the determination of 5-FU in all cell samples. FdUMP, however, could not be detected in these samples. Furthermore, the data obtained in uncoated capillaries are compared to those measured in a fused-silica capillary whose inner surface was coated with linear polyacrylamide (about 10-fold reduction of electroosmosis). The latter capillary format was found to be useless for simultaneous analysis of 5-FU and FdUMP in pancreatic cells but could be potentially useful for analysis of these compounds in plasma.  相似文献   

13.
We have examined transient isotachophoresis (ITP) conditions, e.g. the nature of the terminating ion, its concentration, and the injection procedure, to improve the limit of detection (LOD) for determination of nitrite and nitrate in seawater by capillary zone electrophoresis (CZE). Artificial seawater containing 3.0 mmol L(-1) cetyltrimethylammonium chloride (CTAC) was used as background electrolyte (BGE). After sample injection 600 mmol L(-1) acetate was separately injected into the capillary as the terminating ion for transient ITP. The LOD for nitrite and nitrate, obtained at a signal-to-noise ratio (S/N) of 3, were 15 and 7.0 microg L(-1) (as nitrogen), respectively. Relative standard deviations (RSD) of peak area for nitrite and nitrate were 7.3 and 0.8%, respectively, and the RSD of peak height were 5.7 and 1.2%, respectively, when the concentrations of nitrite and nitrate were 0.05 and 0.25 mg L(-1). The RSD of migration time for these ions was 0.2%. The proposed method was applied to the determination of nitrite and nitrate in seawater samples. The results for nitrite were nearly in agreement with those obtained by naphthylethylenediamine spectrophotometric analysis (SPA; correlation coefficient 0.9041).  相似文献   

14.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column-coupling configuration has been optimized in a mode in which the background electrolyte employed in the CZE step was different from the leading and terminating electrolytes of the ITP step. The optimum composition of the electrolyte system was 0.01 M HCl, 0.02 M IMI, 0.2% HEC, pH 7.2 (leading electrolyte), 0.01 M HEPES, pH 8.2 (terminating electrolyte), and 25 mM MES, 50 mM TRIS, 30 mM boric acid, 0.2% HEC, pH 8.3 (background electrolyte). All solutions contained 20% methanol. The timing of the transfer of isotachophoretically stacked analyte zones into the CZE column was also optimized. An ITP–CZE method with UV detection at 270 nm was developed for separation of nine phenolic acids (protocatechuic, syringic, vanillic, cinnamic, ferulic, caffeic, ρ-coumaric, chlorogenic, and gentisic acids) in a model mixture and used for assay of some of these acids in a methanolic extract of herba epilobi. Application of ITP–CZE resulted in 100-fold better sensitivity than conventional CZE; limits of detection ranged between 10 and 60 ng mL−1. When MES–TRIS–borate-based buffer, pH 8.3, was used in the CZE separation step the linearity of the ITP–CZE response was satisfactory (correlation coefficients were from 0.9937 to 0.9777). Repeatability was also satisfactory (RSD values ranged between 0.77% and 1.28% for migration times and between 1.65% and 13.69% for peak area). Revised: 23 March and 27 April 2006  相似文献   

15.
This work presents a method to separate polar naphthalenesulfonate (NS) isomers by capillary zone electrophoresis (CZE) with ultraviolet detection in industrial effluents and river water samples. The method involves extraction of samples by a polystyrene‐divinylbenzene copolymer (PS‐DVB) solid‐phase extraction (SPE) cartridge. The most effective CZE separation conditions were obtained in 20 mM borate buffer with 30% acetonitrile at pH 9.0 and 30 °C. The method proposed herein provides a high precision and sensitivity for NS isomers, to quantitation at ≤ 1.0 μg/L in 200 mL of the water samples. Recovery of the NS isomers in spiked water samples ranged from 73% to 87% while RSD ranging from 5.6 to 9.7%. The analysis of industrial effluents and river water samples was performed and naphthalene‐2‐sulfonate was found as a major pollutant. The difficulties in quantitating and identifying analytes in complex environmental samples can be resolved by using an internal standard response factor to calculate concentrations and relative migration times for peak confirmation.  相似文献   

16.
A novel electrophoretic BGE containing tungstate as complex-forming reagent is suitable for the separation of polyphenols. Similar to molybdate-containing BGE reported earlier (cf. M. Polásek, et al.., Talanta 2006, 69, 192) addition of tungstate to BGE affects significantly migration of compounds/ligands with vicinal -OH groups due to the formation of negatively charged complexes involving W(VI) as central ion. Baseline separation of mixtures of flavonoids (apigenin, luteolin, hyperoside, quercetin, and rutin) and phenolic acids (chlorogenic and p-coumaric acid) was achieved within 15 min with optimized BGE of pH 7.4 containing 50 mM N-(2-hydroxyethyl)piperazine-2'-(2-ethanesulfonic acid) (HEPES), 2.2 mM tungstate, and 25% v/v of methanol. The separation was performed in a 75 cm (effective length 42 cm)x 75 microm id uncoated fused-silica capillary at 30 kV with spectrophotometric detection at 275 nm. The calibration curves were rectilinear for 25-175 microg/mL of all analytes (cinnamic acid as the internal standard). The LODs ranged from 1.8 to 6 microg/mL for all analytes except for chlorogenic acid. Intraday precision (n = 6) of migration times (RSD < or = 1.2%) and peak areas (RSD < or = 5.6%) was evaluated. The tungstate-based BGEs can be alternatively utilized for the analysis of polyphenols at considerably lower pH than with conventional alkaline borate-based BGEs.  相似文献   

17.
The major phenolic diterpenes responsible for the antioxidant properties of rosemary extracts, namely carnosol and carnosic acid, were separated by capillary zone electrophoresis (CZE) using a 56 cm long uncoated fused-silica capillary and a 50 mM disodium tetraborate buffer of pH 10.1. The effect of the buffer type, pH and concentration, and the capillary length on the separation, was studied. Carnosol and carnosic acid were identified in the electrophoregrams of rosemary extracts through their migration times and UV spectra obtained by CZE analysis of pure compounds isolated from a rosemary extract by HPLC fractionation. The CZE method had good reproducibility (relative standard deviation less than 5%) and was applied to compare the contents of carnosol and carnosic acid in solid and oil-dispersed commercial extracts of rosemary and in rosemary leaves. The separation of carnosol and carnosic acid was accomplished in less than 11 min.  相似文献   

18.
The fast separation capability of a novel miniaturized capillary electrophoresis with amperometric detection (CE-AD) system was demonstrated by determining sugar contents in Coke and diet Coke with an estimated separation efficiency of 60,000 TP/m. Factors influencing the separation and detection processes were examined and optimized. The end-capillary 300 microm Cu wire amperometric detector offers favorable signal-to-noise characteristics at a relatively low potential (+0.50 V vs. Ag/AgCl) for detecting sugars. Three sugars (sucrose, glucose, and fructose) have been separated within 330 s in a 8.5 cm length capillary at a separation voltage of 1000 V using a 50 mM NaOH running buffer (pH 12.7). Highly linear response is obtained for the above compounds over the range of 5.0 to 2.0 x 10(2) microg/mL with low detection limit, down to 0.8 microg/mL for glucose (S/N = 3). The injection-to-injection repeatability for analytes in peak current (RSD < 3.6%) and for migration times (RSD < 1.4%) was excellent. The new miniaturized CE-AD system should find a wide range of analytical applications involving assays of carbohydrates as an alternative to conventional CE and micro-CE.  相似文献   

19.
Summary A capillary zone electrophoresis (CZE) method was developed for the simultaneous assay of three bioactive components—baicalin, chlorogenic acid and caffeic acid—in seven traditional Chinese medicinal preparations. The analytes were separated successfully within 3.5 min using 10 mM borate buffer (pH8.6). Regression equations revealed linear relationships (correlation coefficients 0.9942–0.9996) between the peak area and concentration of the three analytes. The relative standard deviations of the migration times and the peak areas of the three constituents were 1.12–2.68% and 1.62–5.73%, respectively. Recovery of the three constituents ranged from 89 to 107%. The extraction efficiencies of different extraction solutions are also discussed. The contents of the three components in seven different Chinese medicinal preparations containing Honeysuckle flower and/orScutellariae radix were determined by the CZE method with satisfactory results.  相似文献   

20.
Helali N  Tran NT  Monser L  Taverna M 《Talanta》2008,74(4):694-698
A simple and rapid capillary zone electrophoresis (CZE) method with UV detection has been developed for the determination of famotidine and its potential impurities in pharmaceutical formulations. The electrophoretic separation of these compounds was performed using a fused silica capillary and 37.5mmolL(-1) phosphate buffer pH 3.5 as the electrolyte. Under the optimised conditions, six impurities could be resolved from the famotidine peak in less than 7min. The calibration curves obtained for the seven compounds were linear over the concentration range investigated (from 1.5 to 78.5microg mL(-1)). The intra- and inter-day relative standard deviations for the migration times and corrected peak areas were less than 2% and 5%, respectively. The detection limits were found to be 0.09microg mL(-1) for famotidine, and from 0.1 to 0.62microg mL(-1) depending on the impurities. The method has been successfully applied to the determination of famotidine in commercial dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号