首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the game of Cops and Robbers, a team of cops attempts to capture a robber on a graph G. All players occupy vertices of G. The game operates in rounds; in each round the cops move to neighboring vertices, after which the robber does the same. The minimum number of cops needed to guarantee capture of a robber on G is the cop number of G, denoted c(G), and the minimum number of rounds needed for them to do so is the capture time. It has long been known that the capture time of an n-vertex graph with cop number k is O(nk+1). More recently, Bonato et al. (2009) and Gaven?iak (2010) showed that for k=1, this upper bound is not asymptotically tight: for graphs with cop number 1, the cop can always win within n?4 rounds. In this paper, we show that the upper bound is tight when k2: for fixed k2, we construct arbitrarily large graphs G having capture time at least V(G)40k4k+1.In the process of proving our main result, we establish results that may be of independent interest. In particular, we show that the problem of deciding whether k cops can capture a robber on a directed graph is polynomial-time equivalent to deciding whether k cops can capture a robber on an undirected graph. As a corollary of this fact, we obtain a relatively short proof of a major conjecture of Goldstein and Reingold (1995), which was recently proved through other means (Kinnersley, 2015). We also show that n-vertex strongly-connected directed graphs with cop number 1 can have capture time Ω(n2), thereby showing that the result of Bonato et al. (2009) does not extend to the directed setting.  相似文献   

2.
3.
4.
Let G be a balanced bipartite graph of order 2n4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In 1963, Moon and Moser proved that if σ1,1(G)n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon–Moser condition also implies the existence of a 2-factor with exactly k cycles for sufficiently large graphs. In order to prove this, we also give a σ1,1 condition for the existence of k vertex-disjoint alternating cycles with respect to a chosen perfect matching in G.  相似文献   

5.
The k-power graph of a graph G is a graph with the same vertex set as G, in that two vertices are adjacent if and only if, there is a path between them in G of length at most k. A k-tree-power graph is the k-power graph of a tree, a k-leaf-power graph is the subgraph of some k-tree-power graph induced by the leaves of the tree.We show that (1) every k-tree-power graph has NLC-width at most k+2 and clique-width at most k+2+max{?k2??1,0}, (2) every k-leaf-power graph has NLC-width at most k and clique-width at most k+max{?k2??2,0}, and (3) every k-power graph of a graph of tree-width l has NLC-width at most (k+1)l+1?1, and clique-width at most 2?(k+1)l+1?2.  相似文献   

6.
The Kneser graph K(n,k) has as vertices all k-element subsets of [n]={1,2,,n} and an edge between any two vertices that are disjoint. If n=2k+1, then K(n,k) is called an odd graph. Let n>4 and 1<k<n2. In the present paper, we show that if the Kneser graph K(n,k) is of even order where n is an odd integer or both of the integers n,k are even, then K(n,k) is a vertex-transitive non Cayley graph. Although, these are special cases of Godsil [7], unlike his proof that uses some very deep group-theoretical facts, ours uses no heavy group-theoretic facts. We obtain our results by using some rather elementary facts of number theory and group theory. We show that ‘almost all’ odd graphs are of even order, and consequently are vertex-transitive non Cayley graphs. Finally, we show that if k>4 is an even integer such that k is not of the form k=2t for some t>2, then the line graph of the odd graph Ok+1 is a vertex-transitive non Cayley graph.  相似文献   

7.
A graph is packable if it is a subgraph of its complement. The following statement was conjectured by Faudree, Rousseau, Schelp and Schuster in 1981: every non-star graph G with girth at least 5 is packable.The conjecture was proved by Faudree et al. with the additional condition that G has at most 65n?2 edges. In this paper, for each integer k3, we prove that every non-star graph with girth at least 5 and at most 2k?1kn?αk(n) edges is packable, where αk(n) is o(n) for every k. This implies that the conjecture is true for sufficiently large planar graphs.  相似文献   

8.
For a subgraph X of G, let αG3(X) be the maximum number of vertices of X that are pairwise distance at least three in G. In this paper, we prove three theorems. Let n be a positive integer, and let H be a subgraph of an n-connected claw-free graph G. We prove that if n2, then either H can be covered by a cycle in G, or there exists a cycle C in G such that αG3(H?V(C))αG3(H)?n. This result generalizes the result of Broersma and Lu that G has a cycle covering all the vertices of H if αG3(H)n. We also prove that if n1, then either H can be covered by a path in G, or there exists a path P in G such that αG3(H?V(P))αG3(H)?n?1. By using the second result, we prove the third result. For a tree T, a vertex of T with degree one is called a leaf of T. For an integer k2, a tree which has at most k leaves is called a k-ended tree. We prove that if αG3(H)n+k?1, then G has a k-ended tree covering all the vertices of H. This result gives a positive answer to the conjecture proposed by Kano et al. (2012).  相似文献   

9.
The Erd?s–Gallai Theorem states that for k3, any n-vertex graph with no cycle of length at least k has at most 12(k?1)(n?1) edges. A stronger version of the Erd?s–Gallai Theorem was given by Kopylov: If G is a 2-connected n-vertex graph with no cycle of length at least k, then e(G)max{h(n,k,2),h(n,k,?k?12?)}, where h(n,k,a)?k?a2+a(n?k+a). Furthermore, Kopylov presented the two possible extremal graphs, one with h(n,k,2) edges and one with h(n,k,?k?12?) edges.In this paper, we complete a stability theorem which strengthens Kopylov’s result. In particular, we show that for k3 odd and all nk, every n-vertex 2-connected graph G with no cycle of length at least k is a subgraph of one of the two extremal graphs or e(G)max{h(n,k,3),h(n,k,k?32)}. The upper bound for e(G) here is tight.  相似文献   

10.
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, chs(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvo?ák et al. (2013) asked whether the list star chromatic index of every subcubic graph is at most 7. In Kerdjoudj et al. (2017) we proved that it is at most 8. In this paper we consider graphs with any maximum degree, we proved that if the maximum average degree of a graph G is less than 145 (resp. 3), then chs(G)2Δ(G)+2 (resp. chs(G)2Δ(G)+3).  相似文献   

11.
12.
In this paper, we consider combinatorial numbers (Cm,k)m1,k0, mentioned as Catalan triangle numbers where Cm,k?m?1k?m?1k?1. These numbers unify the entries of the Catalan triangles Bn,k and An,k for appropriate values of parameters m and k, i.e., Bn,k=C2n,n?k and An,k=C2n+1,n+1?k. In fact, these numbers are suitable rearrangements of the known ballot numbers and some of these numbers are the well-known Catalan numbers Cn that is C2n,n?1=C2n+1,n=Cn.We present identities for sums (and alternating sums) of Cm,k, squares and cubes of Cm,k and, consequently, for Bn,k and An,k. In particular, one of these identities solves an open problem posed in Gutiérrez et al. (2008). We also give some identities between (Cm,k)m1,k0 and harmonic numbers (Hn)n1. Finally, in the last section, new open problems and identities involving (Cn)n0 are conjectured.  相似文献   

13.
14.
15.
16.
17.
The vertices of Kneser graph K(n,k) are the subsets of {1,2,,n} of cardinality k, two vertices are adjacent if and only if they are disjoint. The square G2 of a graph G is defined on the vertex set of G with two vertices adjacent if their distance in G is at most 2. Z. Füredi, in 2002, proposed the problem of determining the chromatic number of the square of the Kneser graph. The first non-trivial problem arises when n=2k+1. It is believed that χ(K2(2k+1,k))=2k+c where c is a constant, and yet the problem remains open. The best known upper bounds are by Kim and Park: 8k3+203 for 1k3 (Kim and Park, 2014) and 32k15+32 for k7 (Kim and Park, 2016). In this paper, we develop a new approach to this coloring problem by employing graph homomorphisms, cartesian products of graphs, and linear congruences integrated with combinatorial arguments. These lead to χ(K2(2k+1,k))5k2+c, where c is a constant in {52,92,5,6}, depending on k2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号