首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure and bonding situation in 21 metallabenzenes (metal=Os, Ru, Ir, Rh, Pt, and Pd) were investigated at the DFT level (BP86/TZ2P) by using an energy decomposition analysis (EDA) of the interaction energy between various fragments. The aim of the work is to estimate the strength of the pi bonding and the aromatic character of the metallacyclic compounds. Analysis of the electronic structure shows that the metallacyclic moiety has five occupied pi orbitals, two with b1 symmetry and three with a2 symmetry, which describe the pi-bonding interactions. The metallabenzenes are thus 10 pi-electron systems. This holds for 16-electron and for 18-electron complexes. The pi bonding in the metallabenzenes results mainly from the b1 contribution, but the a2 contribution is not negligible. Comparison of the pi-bonding strength in the metallacyclic compounds with acylic reference molecules indicates that metallabenzenes should be considered as aromatic compounds whose extra stabilization due to aromatic conjugation is weaker than in benzene. The calculated aromatic stabilization energies (ASEs) are between 8.7 kcal mol(-1) for 13 and 37.6 kcal mol(-1) for 16 which is nearly as aromatic as benzene (ASE=42.5 kcal mol(-1)). The classical metallabenzene model compounds 1 and 4 exhibit intermediate aromaticity with ASE values of 33.4 and 17.6 kcal mol(-1). The greater stability of the 5d complexes compared with the 4d species appears not to be related to the strength of pi conjugation. From the data reported here there is no apparent trend or pattern which indicates a correlation between aromatic stabilization and particular ligands, metals, coordination numbers or charge. The lower metal-C5H5 binding energy of the 4d complexes correlates rather with weaker sigma-orbital interactions.  相似文献   

2.
Ring currents calculated in the ipsocentric CTOCD-DZ formalism are presented for four representative metallabenzenes, compounds in which a benzene CH group is formally replaced by a transition metal atom with ligands. Aromaticity is probed using ring currents computed using non-relativistic and relativistic orbitals (derived with relativistic effective core potentials or ZORA). Maps computed at different levels of relativistic theory turn out to be similar, showing that orbital nodal character is the main determinant of ring current. Diatropic/paratropic global ring currents in these compounds, and also circulations localised on the metal centre, are interpreted in terms of contributions of localised π-type orbitals and metal d-orbitals, respectively. All four considered metallabenzenes should be regarded as 6π electron species, despite the fact that three support diatropic ('aromatic') ring currents and one a paratropic ('anti-aromatic') current. The current-density maps determine the correct way to count electrons in these species: differential occupation of d-orbitals of formal π-symmetry contributes to circulation on the metal centre, but not around the benzenoid ring. The overall trend from strongly diatropic to weakly paratropic ring currents along the series 1 to 4 is explained by the increasing strength of interaction between formally non-bonding orbitals on the metal centre and C(5)H(5) moiety, which together make up the six-membered ring.  相似文献   

3.
Paul S  Misra A 《Inorganic chemistry》2011,50(8):3234-3246
All-metal aromatic molecules are the latest inclusion in the family of aromatic systems. Two different classes of all-metal aromatic clusters are primarily identified: one is aromatic only in the low spin state, and the other shows aromaticity even in high-spin situations. This observation prompts us to investigate the effect of spin multiplicity on aromaticity, taking Al(4)(2-), Te(2)As(2)(2-), and their copper complexes as reference systems. Among these clusters, it has been found that the molecules that are aromatic only in their singlet state manifest antiaromaticity in their triplet state. The aromaticity in the singlet state is characterized by the diatropic ring current circulated through the bonds, which are cleaved to generate excess spin density on the atoms in the antiaromatic triplet state. Hence, in such systems, an antagonistic relationship between aromaticity and high-spin situations emerges. On the other hand, in the case of triplet aromatic molecules, the magnetic orbitals and the orbitals maintaining aromaticity are different; hence, aromaticity is not depleted in the high-spin state. The nonlinear optical (NLO) behavior of the same set of clusters in different spin states has also been addressed. We correlate the second hyperpolarizability and spin density in order to judge the effect of spin multiplicity on third-order NLO response. This correlation reveals a high degree of NLO behavior in systems with excess spin density. The variance of aromaticity and NLO response with spin multiplicity is found to stem from a single aspect, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and eventually the interplay among aromaticity, magnetism, and NLO response in such materials is established. Hence, the HOMO-LUMO energy gap becomes the cornerstone for tuning the interplay. This correlation among the said properties is not system-specific and thus can be envisaged even beyond the periphery of all-metal aromatic clusters. Such interplay is of crucial importance in tailoring novel paradigm of multifunctional materials.  相似文献   

4.
In this work, we have analyzed the local aromaticity of the six-membered rings (6-MRs) of planar and pyramidalized pyracylene species through the structurally based harmonic oscillator model of aromaticity (HOMA), the electronically based para-delocalization index (PDI), and the magnetic-based nucleus independent chemical shift (NICS) measurements, as well as with maps of ring current density. According to ring currents and PDI and HOMA indicators of aromaticity, there is a small reduction of local aromaticity in the 6-MRs of pyracylene with a bending of the molecule. In the case of NICS, the results depend on whether the NICS value is calculated at the center of the ring (NICS(0)) or at 1 A above (NICS(1)(out)) or below (NICS(1)(in)) the ring plane. While NICS(1)(out) values also indicate a slight decrease of aromaticity with bending, NICS(0) and NICS(1)(in) wrongly point out a large increase of aromaticity upon distortion. We have demonstrated that the NICS(0) reduction in the 6-MRs of pyracylene upon bending is due to (a) a strong reduction of the paratropic currents in 5-MRs and (b) the fact that, due to the distortion, the paratropic currents point their effects in other directions.  相似文献   

5.
6.
Quantitative evidence for the existence of aromaticity involving the d orbitals of transition metals is provided for the first time. The doubly bridged square planar (D(4)(h)()) coinage metal clusters (M(4)Li(2), M = Cu (1), Ag (2), and Au (3)) are characterized as aromatic by their substantial nucleus independent chemical shifts (NICS) values in the centers (-14.5, -14.1, and -18.6, respectively). Nevertheless, the participation of p orbitals in the bonding (and cyclic electron delocalization) of 1-3 is negligible. Instead, these clusters benefit strongly from the delocalization of d and to some extent s orbitals. The same conclusion applies to Tsipis and Tsipis' H-bridged D(4)(h)() Cu(4)H(4) ring (4). Canonical MO-NICS analysis of structures 1-3 shows the total diatropic d orbital contributions to the total NICS to be substantial, although the individual contributions of the five sets of filled d orbitals vary. The d orbital aromaticity of Cu(4)Li(2) also is indicated by its atomization energy, 243.2 kcal/mol, which is larger than Boldyrev's doubly (sigma and pi) aromatic Al(4)Li(2) (215.9 kcal/mol).  相似文献   

7.
The N-heterocyclic carbene, imidazole-2-ylidene, and its main group (13-15) analogues contain cyclically conjugated 6π electrons. Experimental 1H nuclear magnetic resonance (NMR) spectra suggest an increase in aromaticity along a period from left to right. Whereas the order along a group is as follows: period 2 > period 5 > period 4 > period 3 due to change in structure. To understand the order of aromaticity, the magnetically induced ring currents of the molecules are calculated using aromatic ring current shielding, gauge-including magnetically induced currents (GIMIC) method and Stanger's σ-model applying the gauge-including atomic orbitals NMR technique. It is found that GIMIC best describes the order of aromaticity especially along a group where current-profile changes on the bivalent atom down a group due to change in electron density. Moreover, the GIMIC provides the visualization of current by sign modulus and the anisotropy of the induced current density plots.  相似文献   

8.
An LCAO SCF perturbation theory is used to discuss the diamagnetic susceptibility and shielding constant contributions associated with ring currents in aromatic molecules. The proton shielding constants are calculated directly from the current density expression for benzene, naphthalene, anthracene and phenanthrene.  相似文献   

9.
Electronic structure calculations (DFT) suggest that ligand-stabilized three-membered gold(I) rings constituting the core structure in a series of cyclo-Au3L(n)H(3-n) (L = CH3, NH2, OH and Cl; n = 1, 2, 3) molecules exhibit aromaticity, which is primarily due to 6s and 5d cyclic electron delocalization over the triangular Au3 framework (s- and d-orbital aromaticity). The aromaticity of the novel triangular gold(I) isocycles was verified by a number of established criteria of aromaticity. In particular, the nucleus-independent chemical shift, NICS(0), the upfield changes in the chemical shifts for Li+, Ag+, and Tl+ cations over the Au3 ring plane, and their interaction with electrophiles (e.g., H+, Li+, Ag+, and Tl+) are indicative for the aromaticity of the three-membered gold(I) rings. Interestingly, unlike the respective substituted derivatives of cyclopropenium cation and the bora-cyclopropene carbacyclic analogues, the aromatic Au3 rings, although exhibit comparable diatropicity, react with electrophiles in a different way affording 1:1 and 2:1 sandwichlike complexes. The bonding in the three-membered gold(I) rings is characterized by a common ring-shaped electron density, more commonly seen in aromatic organic molecules and in "all-metal" aromatics, such as the cyclo-[Hg3]4- tetraanion. Moreover, the cation-pi interactions in the 1:1 and 1:2 sandwichlike complexes formed upon reacting the Au3 rings with electrophiles, depending on the nature of the cation, are predicted to be predominantly electrostatic (Li+, Tl+) or covalent (H+, Ag+). The 1:2 complexes constitute a new class of sandwichlike complexes, which are expected to have novel properties and applications.  相似文献   

10.
The photochemistry of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)PH(3) and ax-Fe(CO)(4)PH(3) is studied with time-dependent DFT theory to explore the propensity of the excited molecules to expel their ligands. The influence of the PH(3) ligand on the properties of these complexes is compared with the photodissociation behavior of the binary carbonyl complexes Cr(CO)(6) and Fe(CO)(5). The lowest excited states of Cr(CO)(5)PH(3) are metal-to-ligand charge transfer (MLCT) states, of which the first three are repulsive for PH(3) but modestly bonding for the axial and equatorial CO ligands. The repulsive nature is due to mixing of the initial MLCT state with a ligand field (LF) state. A barrier is encountered along the dissociation coordinate if the avoided crossing between these states occurs beyond the equilibrium distance. This is the case for expulsion of CO but not for the PH(3) group as the avoided state crossing occurs within the equilibrium Cr-P distance. The lowest excited state of ax-Fe(CO)(4)PH(3) is a LF state that is repulsive for both PH(3) and the axial CO. Excited-state quantum dynamics calculations for this state show a branching ratio of 99 to 1 for expulsion of the axial phosphine ligand over an axial CO ligand. The nature of the phosphorus ligand in these Cr and Fe complexes is only of modest importance. Complexes containing the three-membered phosphirane or unsaturated phosphirene rings have dissociation curves for their lowest excited states that are similar to those having a PH(3) ligand. Analysis of their ground-state Cr-P bond properties in conjunction with frontier orbital arguments indicate these small heterocyclic groups to differ from the PH(3) group mainly by their enhanced sigma-donating ability. All calculations indicate that the excited Cr(CO)(5)L and Fe(CO)(4)L molecules (L = PH(3), PC(2)H(5), and PC(2)H(3)) prefer dissociation of their phosphorus substituent over that of an CO ligand. This suggests that the photochemical approach may be a viable complement to the ligand exchange and redox methods that are currently employed to demetalate transition metal complexed organophosphorus compounds.  相似文献   

11.
We have studied the topological and local aromaticity of BN-substituted benzene, pyrene, chrysene, triphenylene and tetracene molecules. The nucleus-independent chemical shielding (NICS), harmonic oscillator model of aromaticity (HOMA), para-delocalization index (PDI) and aromatic fluctuation index (FLU) have been calculated to quantify aromaticity in terms of magnetic and structural criteria. We find that charge separations due to the introduction of heteroatoms largely affect both the local and topological aromaticity of these molecules. Our studies show that the presence of any kind of heteroatom in the ring not only reduces the local delocalization in the six membered ring, but also affects strongly the topological aromaticity. In fact, the relative orders of the topological and local aromaticity depend strongly on the position of the heteroatoms in the structure. In general, more ring shared BN containing molecules are less aromatic than the less ring shared BN molecules. In addition our results provide evidence that the structural stability of the molecule is dominated by the σ bond rather than the π bond.  相似文献   

12.
Density Functional Theory calculations have been performed for the cationic half-sandwich gallylene complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaX)](+) (M = Fe, L = CO, PMe(3); X = Cl, Br, I, NMe(2), Mes; M = Ru, Os: L = CO, PMe(3); X = I, NMe(2), Mes) at the BP86/TZ2P/ZORA level of theory. Calculated geometric parameters for the model iron iodogallylene system [(η(5)-C(5)H(5))(Me(3)P)(2)Fe(GaI)](+) are in excellent agreement with the recently reported experimental values for [(η(5)-C(5)Me(5))(dppe)Fe(GaI)](+). The M-Ga bonds in these systems are shorter than expected for single bonds, an observation attributed not to significant M-Ga π orbital contributions, but due instead primarily to high gallium s-orbital contributions to the M-Ga bonding orbitals. Such a finding is in line with the tenets of Bent's Rule insofar as correspondingly greater gallium p-orbital character is found in the bonds to the (more electronegative) gallylene substituent X. Consistent with this, ΔE(σ) is found to be overwhelmingly the dominant contribution to the orbital interaction between [(η(5)-C(5)H(5))(L)(2)M](+) and [GaX] fragments (with ΔE(π) equating to only 8.0-18.6% of the total orbital contributions); GaX ligands thus behave as predominantly σ-donor ligands. Electrostatic contributions to the overall interaction energy ΔE(int) are also very important, being comparable in magnitude (or in some cases even larger than) the corresponding orbital interactions.  相似文献   

13.
Central transition (55)Mn NMR spectra of several solid manganese pentacarbonyls acquired at magnetic field strengths of 11.75, 17.63, and 21.1 T are presented. The variety of distinct powder sample lineshapes obtained demonstrates the sensitivity of solid-state (55)Mn NMR to the local bonding environment, including the presence of crystallographically unique Mn sites, and facilitates the extraction of the Mn chemical shift anisotropies, CSAs, and the nuclear quadrupolar parameters. The compounds investigated include molecules with approximate C(4v) symmetry, LMn(CO)(5)(L = Cl, Br, I, HgMn(CO)(5), CH(3)) and several molecules of lower symmetry (L = PhCH(2), Ph(3-n)Cl(n)Sn (n= 1, 2, 3)). For these compounds, the Mn CSA values range from <100 ppm for Cl(3)SnMn(CO)(5) to 1260 ppm for ClMn(CO)(5). At 21.1 T the (55)Mn NMR lineshapes are appreciably influenced by the Mn CSA despite the presence of significant (55)Mn quadrupolar coupling constants that range from 8.0 MHz for Cl(3)SnMn(CO)(5) to 35.0 MHz for CH(3)Mn(CO)(5). The breadth of the solid-state (55)Mn NMR spectra of the pentacarbonyl halides is dominated by the CSA at all three applied magnetic fields. DFT calculations of the Mn magnetic shielding tensors reproduce the experimental trends and the magnitude of the CSA is qualitatively rationalized using a molecular orbital, MO, interpretation based on Ramsey's theory of magnetic shielding. In addition to the energy differences between symmetry-appropriate occupied and virtual MOs, the d-character of the Mn MOs is important for determining the paramagnetic shielding contribution to the principal components of the magnetic shielding tensor.  相似文献   

14.
Three-dimensional aromaticity is shown to play a role in the stability of deltahedral Zintl clusters and here we examine the connection between aromaticity and stability. In order to gain further insight, we have studied Zintl analogs comprised of bismuth doped tin clusters with photoelectron spectroscopy and theoretical methods. To assign aromaticity, we examine the ring currents induced around the cage by using the nucleus independent chemical shift. In the current study, BiSn(4)(-) is a stable cluster and fits aromatic criteria, while BiSn(5)(-) is found to fit antiaromatic criteria and has reduced stability. The more stable clusters exhibit an aromatic character which originates from weakly interacting s-states and bonding orbitals parallel to the surface of the cluster, while nonbonding lone pairs perpendicular to the surface of the cluster account for antiaromaticity and reduced stability. The effect of three-dimensional aromaticity on the electronic structure does not result in degeneracies, so the resulting variations in stability are smaller than those seen in conventional aromaticity.  相似文献   

15.
Tan ZF  Liu CY  Li Z  Meng M  Weng NS 《Inorganic chemistry》2012,51(4):2212-2221
Incorporating two quadruply bonded dimolybdenum units [Mo(2)(DAniF)((3))](+) (ancillary ligand DAniF = N,N'-di-p-anisylformamidinate) with two hydroselenides (SeH(-)) gave rise to [Mo(2)(DAniF)(3)](2)(μ-SeH)(2) (1). With the molecular scaffold remaining unchanged, aerobic oxidation of 1, followed by autodeprotonation, generated [Mo(2)(DAniF)(3)](2)(μ-Se)(2) (2). The two complexes share a common cyclic six-membered Mo(2)/Se core, but compound 2 is distinct from 1 by having structural, electronic, and magnetic properties that correspond with aromaticity. Importantly, the aromatic behaviors for this non-carbon system are ascribable to the bonding analogy between the δ component in a Mo-Mo quadruple bond and the π component in a C-C double bond. Cyclic π delocalization via d(δ)-p(π) conjugation within the central unit, which involves six π electrons with one electron from each of the Mo(2) units and two electrons from each of the bridging atoms, has been confirmed in a previous work on the oxygen- and sulfur-bridged analogues (Fang, W.; et al. Chem.-Eur. J.2011, 17, 10288). Of the three members in this family, compound 2 exhibits an enhanced aromaticity because of the selenium bridges. The remote in-plane and out-of-plane methine (ArNCHNAr) protons resonate at chemical shifts (δ) 9.42 and 7.84 ppm, respectively. This NMR displacement, Δδ = 1.58 ppm, is larger than that for the oxygen-bridged (1.30 ppm) and sulfur-bridged (1.49 ppm) derivatives. The abnormally long-range shielding effects and the large diamagnetic anisotropy for this complex system can be rationalized by the induced ring currents circulating the Mo(2)/chalcogen core. By employment of the McConnell equation {Δσ = Δχ[(l - 3 cos 2θ)/3R(3)N]}, the magnetic anisotropy (Δχ = χ(⊥) - χ(||)) is estimated to be -414 ppm cgs, which is dramatically larger than -62.9 ppm cgs for benzene, the paradigm of aromaticity. In addition, it is found that the magnitude of Δχ is linearly related to the radius of the bridging atoms, with the selenium analogue having the largest value. This aromaticity sequence is in agreement with that for the chalcogen-containing aromatic family, e.g., furan < thiophene < selenophene.  相似文献   

16.
Ternary Cu(ii) complexes containing an aromatic diimine (DA = di(2-pyridylmethyl)amine (dpa), 4,4'-disubstituted 2,2'-bipyridine (Y(2)bpy; Y = H (bpy), Me, Cl, N(Et)(2), CONH(2) or COOEt) or 2,2'-bipyrimidine) and an aromatic amino acid (AA = l-phenylalanine (Phe), p-substituted phenylalanine (XPhe; X = NH(2), NO(2), F, Cl or Br), l-tyrosine (Tyr), l-tryptophan (Trp) or l-alanine (Ala)) were characterized by X-ray diffraction, spectroscopic and potentiometric measurements. The structures of [Cu(dpa)(Trp)]ClO(4).2H(2)O and [Cu((CONH(2))(2)bpy)(Phe)]ClO(4).H(2)O in the solid state were revealed to have intramolecular pi-pi interactions between the Cu(ii)-coordinated aromatic ring moiety, Cu(DA) (Mpi), and the side chain aromatic ring of the AA (Lpi). The intensities of Mpi-Lpi interactions were evaluated by the stability constants of the ternary Cu(ii) complexes determined at 25 degrees C and I = 0.1 M (KNO(3)), which revealed that the stability enhancement of the Cu(DA)(AA) systems due to the interactions is in the order (CONH(2))(2)bpy < bpy < Me(2)bpy < (Et(2)N)(2)bpy with respect to DA. The results indicate that the electron density of coordinated aromatic diimines influences the intensities of the stacking interactions in the Cu(DA)(AA) systems. The Mpi-Lpi interactions are also influenced by the substituents, X, of Lpi and are in linear relationship with their Hammett sigma(p) values with the exception of X = Cl and Br.  相似文献   

17.
Metalla‐analogues of archetypal aromatic molecules are attracting ever increasing interest. Although metallabenzenes (which fall within this class) have been well studied, fused‐ring metallabenzenes are rare and of the linear polycyclic metallaaromatic hydrocarbons, only metallanaphthalene is known. Herein we report the first metallaanthracene, [Ir(C13H8{CH2CO2Me‐5})Cl(PPh3)2]O3SCF3 ( 5 ), which represents the next member of this series of polycyclic compounds. Structurally, 5 has a number of features in common with anthracene including fused‐ring planarity and bond‐length alternation. In analogues of classic reactions of anthracene, 5 forms a Diels–Alder adduct with maleic anhydride and on oxidation the unprecedented fused‐ring metallaanthraquinone, [Ir(C15H6O{Br‐6}{OMe‐7}{=O‐8}{=O‐15})Br(PPh3)2], is obtained.  相似文献   

18.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

19.
20.
In all molecules, a current density is induced when the molecule is subjected to an external magnetic field. In turn, this current density creates a particular magnetic field. In this work, the bifurcation value of the induced magnetic field is analyzed in a representative set of aromatic, non-aromatic and antiaromatic monocycles, as well as a set of polycyclic hydrocarbons. The results show that the bifurcation value of the ring-shaped domain adequately classifies the studied molecules according to their aromatic character. For aromatic and nonaromatic molecules, it is possible to analyze two ring-shaped domains, one diatropic (inside the molecular ring) and one paratropic (outside the molecular ring). Meanwhile, for antiaromatic rings, only a diatropic ring-shaped domain (outside the molecular ring) is possible to analyze, since the paratropic domain (inside the molecular ring) is irreducible with the maximum value (attractor) at the center of the molecular ring. In some of the studied cases, i. e., in heteroatomic species, bifurcation values do not follow aromaticity trends and present some inconsistencies in comparison to ring currents strengths, showing that this approximation provides only a qualitative estimation about (anti)aromaticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号