首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of [Pt(NH3)2(NHCOtBu)2] and TlX3 (X = NO3-, Cl-, CF3CO2-) yielded dinuclear [{Pt(ONO2)(NH3)2(NHCOtBu)}Tl(ONO2)2(MeOH)] (2) and trinuclear complexes [{PtX(RNH2)2(NHCOtBu)2}2Tl]+ [X = NO3- (3), Cl- (5), CF3CO2- (6)], which were spectroscopically and structurally characterized. Strong Pt-Tl interaction in the complexes in solutions was indicated by both 195Pt and 205Tl NMR spectra, which exhibit very large one-bond spin-spin coupling constants between the heteronuclei (1J(PtTl)), 146.8 and 88.84 kHz for 2 and 3, respectively. Both the X-ray photoelectron spectra and the 195Pt chemical shifts reveal that the complexes have Pt centers whose oxidation states are close to that of Pt(III). Characterization of these complexes by X-ray diffraction analysis confirms that the Pt and Tl atoms are held together by very short Pt-Tl bonds and are supported by the bridging amidate ligands. The Pt-Tl bonds are shorter than 2.6 Angstrom, indicating a strong metal-metal attraction between these two metals. Compound 2 was found to activate the C-H bond of acetone to yield a platinum(IV) acetonate complex. This reactivity corresponds to the property of Pt(III) complexes. Density functional theory calculations were able to reproduce the large magnitude of the metal-metal spin-spin coupling constants. The couplings are sensitive to the computational model because of a delicate balance of metal 6s contributions in the frontier orbitals. The computational analysis reveals the role of the axial ligands in the magnitude of the coupling constants.  相似文献   

2.
The bisporphyrin host ZnH was synthesized, and its complexation with two aromatic diimide guest molecules, bis(pyridyl)naphthalenediimide NIN and bis(pyridyl)phenyldiimide PIN, was investigated by (1)H NMR and UV/Vis spectroscopy. The diimide guests were complexed simultaneously with both metalloporphyrins of the host, with association constants on the order of 10(8)M(-1). The processes occurring in the complex after excitation of the porphyrinic host were studied by steady-state and time-resolved emission and transient absorption spectroscopy. Complexation alters the photophysical properties of the host ZnH; the luminescence bands shift to the red by 30 nm in the complexed forms, while the emission quantum yield and the lifetime decrease. Comparison of a complex between ZnH and a model guest unable to undergo photoinduced processes allowed us to establish that, in the diimide complexes, quenching of the porphyrinic luminescence occurs with a rate of 1.1 x 10(10)s(-1). The process is identified as an electron transfer from the excited singlet of the porphyrinic host to the imide guest, which yields charge-separated states with a lifetime of 710 ps for ZnH(+)-NIN(-) and 260 ps for ZnH(+)-PIN(-).  相似文献   

3.
Interactions between a pair of transition-metals can range from weak antiferromagnetic coupling to bonds of the highest multiplicity known in chemistry, for example, quadruple in isolatable compounds. Tremendous effort has been invested in studying homodinuclear transition-metal-metal bonds. In contrast, relatively little attention has been devoted to heterodinuclear analogues, as it is substantially more challenging to prepare and handle such entities. Yet, in this largely unexplored area of transition-metal chemistry, novel chemical interactions with unprecedented reactivities are likely to be found. Heterodinuclear analogues of diatomic transition-metal dimers being yet inaccessible, dinuclear complexes with Werner-type ligands provide examples of high-multiplicity bonds between different d elements in their least-perturbed form. Such compounds provide an opportunity to probe fundamental issues of chemical bonding between transition-metals, by revealing how and to what extent such bonds are affected by differences in the two metals. Complexes wherein electronically unsaturated heterodinuclear cores are stabilized by pi-acidic ligands (such as CO) hold the potential of new chemical reactions (including catalytic) that capitalize on the synergetic effect of two transition-metal centers.  相似文献   

4.
Uemura K  Ebihara M 《Inorganic chemistry》2011,50(17):7919-7921
We have succeeded in obtaining unique one-dimensional (1D) chain complexes (1, 2, and 3) comprised of two types of metal species: rhodium and platinum. These compounds are constructed from a dinuclear rhodium complex (i.e., [Rh(2)]) and a pivalamidate-bridged platinum complex (i.e., [Pt(2)]), forming an attractive quasi-1D infinite chain, expressed as -{[Rh(2)]-[Pt(2)]-[Pt(2)]}(n)-. Interestingly, the bridging ligands of [Rh(2)] can be varied with trifluoroacetate, acetate, and acetamidate groups, indicating the possibility of electronic structure modulation in the 1D chain.  相似文献   

5.
Photoinduced electron transfer in supramolecular assemblies consisting of π-donor dialkoxyarene-functionalized photosensitizers and bipyridinium electron acceptors is examined. The photosensitizers include Ru(II)-tris-bipyridine complexetethered by multi-branch one-shell and two-shell dialkoxybenzene π-donor sites or a Zn(II)-porphyrin capped by a dialkoxybenzene receptor site. The photosensitizer/electron-acceptor supramolecular complexes behave as non-covalent diads and polyads. Effective internal electron transfer quenching within the supramolecular assemblies proceeds. A quantitative model that accounts for the photoinduced electron transfer in the systems is formulated.  相似文献   

6.
《Polyhedron》1987,6(4):685-693
The strength of multiple metal-metal bonds in the metal dimers M2 (M = Cr, Mo or W) and binuclear complexes M2(OH)6 (M = Cr, Mo or W), M2Cl4(PH3)4 M = V, Cr, Mn, Nb, Mo, Tc, Ta, W or Re) has been studied by a non-local density functional theory. The method employed here provides metal-metal bond energies [D(M-M)] in good accord with experiments for Cr2 and Mo2, and predicts that W2 of the three dimers M2 (M = Cr, Mo or W) has the strongest metal-metal bond with D(W-W) = 426 kJ mol−1 and R(W-W) = 2.03 Å. Among the binuclear complexes studied here we find the 3d elements to form relatively weak metal-metal bonds (40–100 kJ mol−1), compared to the 4d and 5d elements with bonding energies ranging from 250 to 450 kJ mol−1. The metal-metal bond for a homologous series is calculated to be up to 100 kJ mol−1 stronger for the 5d complex, than for the 4d complex. An energy decomposition of D(M-M) revealed that the σ-bond is somewhat stronger than each of the π-bonds, and one order of magnitude stronger than the δ-bond. For the same transition metal we find D(M-M) to be larger for M2(PH3)4Cl4 (M = Cr, Mo or W) than for M2(OH)6 (M = Cr, Mo or W), and attribute this to a stronger π-interaction in the former series. While many of the findings here are in agreement with previous HFS studies, the order of stability D(3d-3d) « D(4d-4d) < D(5d-5d) differs from the order D(3d-3d) « D(5d-5d) < D(4d-4d) obtained by the HFS method, and the present method provides in general more modest values for D(M-M) than the HFS scheme.  相似文献   

7.
Ultrafast dissociation of excitons in CdSe quantum dots via electron transfer to adsorbed Re-bipyridyl complexes was demonstrated. The dissociation pathway was determined by the observation of reduced adsorbate using femtosecond IR spectroscopy. The rate of electron transfer was shown to increase at smaller QD sizes. Electron transfer time as fast as 2.3 ps was observed, faster than the exciton annihilation time in CdSe. The ultrafast charge separation in this quantum dot-adsorbate donor-acceptor complex provides a potential approach for separating multiple excitons in quantum dots.  相似文献   

8.
The photochemistry of arene-linked phthalimides incorporating the carboxylate or thioether donor group was investigated. Simple N-phthalimidophenyl alkanoates exclusively gave photoreduction (CO2H/H-exchange) products. In contrast, ω-phthalimido-meta-phenoxy carboxylates underwent photodecarboxylative cyclizations in yields of 6-48%. Likewise, catechol-linked derivatives furnished analogue cyclization products in 18-38% yield. Using the photodecarboxylation protocol, macrocyclic target compounds with ring sizes up to 17 could thus be realized. Two model phthalimides containing a thioether branch at the ortho-position of the arene-linker gave the analogue seven-membered cyclization products in yields of 28% and 35%, respectively.  相似文献   

9.
The structures of three closely related heterodimetallic cyano complexes, [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3), formed in reactions between [Pt(II)(CN)(4)](2)(-) and Tl(III) cyano complexes, have been studied in aqueous solution. Multinuclear NMR data ((205)Tl, (195)Pt, and (13)C) were used for identification and quantitative analysis. X-ray absorption spectra were recorded at the Pt and Tl L(III) edges. The EXAFS data show, after developing a model describing the extensive multiple scattering within the linearly coordinated cyano ligands, short Pt-Tl bond distances in the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes: 2.60(1), 2.62(1), and 2.64(1) A for n = 1-3, respectively. Thus, the Pt-Tl bond distance increases with increasing number of cyano ligands on the thallium atom. In all three complexes the thallium atom and five cyano ligands, with a mean Pt-C distance of 2.00-2.01 A, octahedrally coordinate the platinum atom. In the hydrated [(NC)(5)Pt-Tl(CN)(H(2)O)(4)](-) species the thallium atom coordinates one cyano ligand, probably as a linear Pt-Tl-CN entity with a Tl-C bond distance of 2.13(1) A, and possibly four loosely bound water molecules with a mean Tl-O bond distance of about 2.51 A. In the [(NC)(5)Pt-Tl(CN)(2)](2)(-) species, the thallium atom probably coordinates the cyano ligands trigonally with two Tl-C bond distances at 2.20(2) A, and in [(NC)(5)Pt-Tl(CN)(3)](3)(-) Tl coordinates tetrahedrally with three Tl-C distances at 2.22(2) A. EXAFS data were reevaluated for previously studied mononuclear thallium(III)-cyano complexes in aqueous solution, [Tl(CN)(2)(H(2)O)(4)](+), [Tl(CN)(3)(H(2)O)], and [Tl(CN)(4)](-), and also for the solid K[Tl(CN)(4)] compound. A comparison shows that the Tl-C bond distances are longer in the dinuclear complexes [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) (n = 1-3) for the same coordination number. Relative oxidation states of the metal atoms were estimated from their (195)Pt and (205)Tl chemical shifts, confirming that the [(NC)(5)Pt-Tl(CN)(n)()](n)()(-) complexes can be considered as metastable intermediates in a two-electron-transfer redox reaction from platinum(II) to thallium(III). Vibrational spectra were recorded and force constants from normal-coordinate analyses are used for discussing the delocalized bonding in these species.  相似文献   

10.
Photoinduced electron transfer (PET) between alpha-cyclodextrin-appended pyrene (PYCD) and a few acceptor molecules was studied in aqueous solutions. The pyrene moiety in PYCD is located above the narrower rim of the alpha-CD and is fully exposed to water. The acceptors are monocyclic organic molecules and, upon dissolution in water in the presence of PYCD, a fraction of the donor-acceptor systems is present as supramolecular dyads and the remaining fraction as free molecules. Free-energy-dependence studies showed that electron transfer in the supramolecular dyads follows the Marcus equation. The donor-acceptor coupling and the reorganization energy were determined from fits of the data to the Marcus equation. The electronic coupling was found to be similar to those reported for hydrogen-bonded systems. It appears that the actual lambdaout values are somewhat lower than values calculated with the continuum model. The experimental design has also allowed, for the first time, a visual demonstration of the inverted region on the basis of the raw fluorescence lifetime data.  相似文献   

11.
在分子水平研究新型人工光俘获材料对于太阳能电池的发展具有重要意义。本文采用TD-DFT方法研究了卟啉-富勒烯(P-C60)体系的光诱导电子转移过程。该过程由三个过程组成:(1)光激发过程,P-C60由基态激发至卟啉局域激发(LE)态;(2)电荷分离(CS)过程形成卟啉至富勒烯的电荷转移(CT)态;(3)电荷重组(CR)过程,CT态返回到基态。我们通过分析分子轨道指认了LE态和CT,并获得了这两个激发态的结构。采用广义Mulliken-Hush(GMH)方法计算体系电荷分离和电荷重组过程的态态间电子耦合,和实验测量的电子转移速率获得定性一致的结果。本工作为分析、预测光诱导电荷转移过程提供了有效的手段。  相似文献   

12.
13.
The photoinduced electron transfer reactions of the triplet state of rose bengal (RB) and several electron donors were investigated by the complementary techniques of steady state and time-resolved electron paramagnetic resonance (EPR) and laser flash photolysis (LFP). The yield of radicals varied with the light fluence rate, RB concentration and, in particular, the electron donor used. Thus for L-dopa (dopa, dihydroxyphenylalanine) only 10% of RB anion radical (RB√−) was produced, with double the yield observed with NADH (NAD, nicotinamide adenine dinucleotide) as quencher and more than three times the yield observed with ascorbate as quencher. Quenching of the RB triplet was both reactive and physical with total quenching rate constants of 4 × 108 mol−1 dm3 s−1 and 8.5 × 108 mol−1 dm3 s−1 for ascorbate and NADH respectively. The rate constant for the photoinduced electron transfer from ascorbate to RB triplet was 1.4 × 108 mol−1 dm3 s−1 as determined by Fourier transform EPR (FT EPR). FT EPR spectra were spin polarized in emission at early times indicating a radical pair mechanism for the chemically induced dynamic electron polarization. Subsequent to the initial electron transfer production of radicals, a complex series of reactions was observed, which were dominated by processes such as recombination, disproportionation and secondary (bleaching) reactions.

It was observed that back electron transfer reactions could be prevented by mild oxidants such as ferric compounds and duroquinone, which were efficiently reduced by RB√−.  相似文献   


14.
15.
The photophysical properties of mixed coaggregates containing 1,4-dicyanonaphthalene (DCN) and 1,3,5-triphenyl-2-pyrazoline (TPP) have been studied. The absorption spectra of mixed coaggregates indicate that a charge-transfer complex is not formed in the ground state between DCN and TPP. The fluorescence of TPP in the mixed coaggregates is quenched by DCN, accompanied with a broad and structureless emission at about 560 nm from an exciplex between DCN and TPP. The color of the emission from mixed coaggregates is tunable by changing the DCN content. The excited-state properties of the TPP-DCN molecule pair are investigated theoretically with a quantum chemistry method. The theoretical results have also confirmed that the broad emission at about 560 nm in the mixed coaggregates originates from the exciplex rather than from the charge-transfer complex.  相似文献   

16.
A series of six new dyads consisting of a zinc or magnesium porphyrin appended to a platinum terpyridine acetylide complex via a para-phenylene bisacetylene spacer are described. Different substituents on the 4' position of the terpyridinyl ligand were explored (OC7H15, PO3Et2, and H). The ground-state electronic properties of the dyads are studied by electronic absorption spectroscopy and electrochemistry, and they indicate some electronic interactions between the porphyrin subunit and the platinum complex. The photophysical properties of these dyads were investigated by steady-state, time-resolved, and femtosecond transient absorption spectroscopy in N,N-dimethylformamide solution. Excitation of the porphyrin unit leads to a very rapid electron transfer (2-20 ps) to the nearby platinum complex followed by an ultrafast charge recombination, thus preventing any observation of the charge separated state. The variation in the rate of the photoinduced electron transfer in the series of dyads is consistent with Marcus theory. The results underscore the potential of the para-phenylene bisacetylene bridge to mediate a rapid electron transfer over a long donor-acceptor distance.  相似文献   

17.
Photoinduced electron transfer from chlorophyll-a throughtheinterface of dipalmitoylphosphatidylcholine (DPPC) headgroup of the lipid bilayers was studied with electron magnetic resonance (EMR). The photoproduced radicals were identified with electron spin resonance (ESR) and radical yields of chlorophyll-a were determined by double integration ESR spectra. The formation of vesicles was identified by changes in measured λmax values from diethyl ether solutions to vesicles solutions indirectly, and observed directly with SEM and TEM images. The efficiency of photosynthesis in model system was determined by measuring the amount of chlorophyll-a radical yields which were obtained from integration of ESRspectra.  相似文献   

18.
A series of electron donor-acceptor (DA) dyads, composed of a porphyrin donor and a fullerene acceptor covalently linked with two molecular chains, were used to fabricate solid molecular films with the Langmuir-Blodgett (LB) technique. By means of the LB technique, the DA molecules can be oriented perpendicular to the plane of the substrate. In DHD6ee and its zinc derivative hydrophilic groups are attached to the phenyl moieties in the porphyrin end of the molecule; while in the other three dyads, TBD6a, TBD6hp, and TBD4hp, the hydrophilic groups are in the fullerene end of the molecule. This makes it possible to alternate the orientation of the molecules in two opposite directions with respect to the air-water interface and to fabricate molecular assemblies in which the direction of the primary photoinduced vectorial electron transfer can be controlled both by the deposition direction of the LB monolayer and by the selection of the used DA molecule. This was proved by the time-resolved Maxwell displacement charge measurements. The spectroscopic properties of the DA films were studied with the steady-state absorption and fluorescence methods. In addition, the time correlated single photon counting technique was used to determine the fluorescence properties of the dyad films.  相似文献   

19.
Photooxidation of leuco crystal violet(LCV) to the dye(CV+) by interfacial sensitization with polymer-bonded pyrenyl groups was studied. Poly(ethylene-g-acrylic acid) was esterified by 1-hydroxymethylpyrene in tetrahydrofuran (THF) (Film 1) or in acetonitrile (Film 2). Film 2 had a more condensed but thinner pyrene-containing surface layer than Film 1. Differences in surface structure were investigated by fluorescence and absorption spectra, as well as by measuring contant angle to water as a function of the total amount of bonded pyrene. Films 1 and 2 behaved differently in the photoreaction, which was interpreted as due to the difference in the affinity of LCV solution to the film surface, hence the diffusion of LCV into the film. The quantum efficiency of CV+ formation (?cv+) is therefore the function of the thickness of the photoabsorbing layer and the effective reaction volume determined by the depth of LCV diffusion. The role of excimer formation and energy migration among pyrenyl groups was concluded to be of minor importance.  相似文献   

20.
The photochemistry and photophysics of pyrylium derivatives with organic sulfides in acetonitrile medium are investigated. A steady decrease in the fluorescence intensity and fluorescence lifetime of the dyes was observed with increase in the quencher concentration. Bimolecular quenching constants were evaluated and correlated with the free energy of electron transfer. Laser flash photolysis investigations on the dyes in presence of quenchers were done. Observation of pyranyl radical and sulfide cation radicals as intermediates clearly illustrates the electron transfer mechanistic pathway for this reaction. The radical pair energies were calculated and found to be lower than the triplet energy of the sensitisers and hence we do not see any triplet induction in the present system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号