首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Membrane algorithms (MAs), which inherit from P systems, constitute a new parallel and distribute framework for approximate computation. In the paper, a membrane algorithm is proposed with the improvement that the involved parameters can be adaptively chosen. In the algorithm, some membranes can evolve dynamically during the computing process to specify the values of the requested parameters. The new algorithm is tested on a well-known combinatorial optimization problem, the travelling salesman problem. The empirical evidence suggests that the proposed approach is efficient and reliable when dealing with 11 benchmark instances, particularly obtaining the best of the known solutions in eight instances. Compared with the genetic algorithm, simulated annealing algorithm, neural network and a fine-tuned non-adaptive membrane algorithm, our algorithm performs better than them. In practice, to design the airline network that minimize the total routing cost on the CAB data with twenty-five US cities, we can quickly obtain high quality solutions using our algorithm.  相似文献   

2.
The cumulative capacitated vehicle routing problem (CCVRP) is a combinatorial optimization problem which aims to minimize the sum of arrival times at customers. This paper presents a brain storm optimization algorithm to solve the CCVRP. Based on the characteristics of the CCVRP, we design new convergent and divergent operations. The convergent operation picks up and perturbs the best-so-far solution. It decomposes the resulting solution into a set of independent partial solutions and then determines a set of subproblems which are smaller CCVRPs. Instead of directly generating solutions for the original problem, the divergent operation selects one of three operators to generate new solutions for subproblems and then assembles a solution to the original problem by using those new solutions to the subproblems. The proposed algorithm was tested on benchmark instances, some of which have more than 560 nodes. The results show that our algorithm is very effective in contrast to the existing algorithms. Most notably, the proposed algorithm can find new best solutions for 8 medium instances and 7 large instances within short time.  相似文献   

3.
In this paper, we provide a heuristic procedure, that performs well from a global optimality point of view, for an important and difficult class of bilevel programs. The algorithm relies on an interior point approach that can be interpreted as a combination of smoothing and implicit programming techniques. Although the algorithm cannot guarantee global optimality, very good solutions can be obtained through the use of a suitable set of parameters. The algorithm has been tested on large-scale instances of a network pricing problem, an application that fits our modeling framework. Preliminary results show that on hard instances, our approach constitutes an alternative to solvers based on mixed 0–1 programming formulations.  相似文献   

4.
In this paper a new mixed-integer linear programming (MILP) model is proposed for the multi-processor open shop scheduling (MPOS) problems to minimize the makespan with considering independent setup time and sequence dependent removal time. A hybrid imperialist competitive algorithm (ICA) with genetic algorithm (GA) is presented to solve this problem. The parameters of the proposed algorithm are tuned by response surface methodology (RSM). The performance of the algorithm to solve small, medium and large sized instances of the problem is evaluated by introducing two performance metrics. The quality of obtained solutions is compared with that of the optimal solutions for small sized instances and with the lower bounds for medium sized instances. Also some computational results are presented for large sized instances.  相似文献   

5.
A Tabu Search Algorithm for the Quadratic Assignment Problem   总被引:1,自引:0,他引:1  
Tabu search approach based algorithms are among the widest applied to various combinatorial optimization problems. In this paper, we propose a new version of the tabu search algorithm for the well-known problem, the quadratic assignment problem (QAP). One of the most important features of our tabu search implementation is an efficient use of mutations applied to the best solutions found so far. We tested this approach on a number of instances from the library of the QAP instances—QAPLIB. The results obtained from the experiments show that the proposed algorithm belongs to the most efficient heuristics for the QAP. The high efficiency of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances.  相似文献   

6.
In mobile network design, the problem of assigning network elements to controllers when defining network structure can be modeled as a graph partitioning problem. In this paper, a comprehensive analysis of a sophisticated graph partitioning algorithm for grouping base stations into packet control units in a mobile network is presented. The proposed algorithm combines multi-level and adaptive multi-start schemes to obtain high quality solutions efficiently. Performance assessment is carried out on a set of problem instances built from measurements in a live network. Overall results confirm that the proposed algorithm finds solutions better than those obtained by the classical multi-level approaches and much faster than classical multi-start approaches. The analysis of the optimization surface shows that the best local minima values follow a Gumbel distribution, which justifies the stagnation of naive multi-start approaches after a few attempts. Likewise, the analysis shows that the best local minima share strong similarities, which is the reason for the superiority of adaptive multi-start approaches. Finally, a sensitivity analysis shows the best internal parameter settings in the algorithm.  相似文献   

7.
In this paper, we investigate the weighted maximal planar graph (WMPG) problem. Given a complete, edge-weighted, simple graph, the WMPG problem involves finding a subgraph with the highest sum of edge weights that is maximal planar, namely, it can be embedded in the plane without any of its edges intersecting, and no additional edge can be added to the subgraph without violating its planarity. We present a new integer linear programming (ILP) model for this problem. We then develop a cutting-plane algorithm to solve the WMPG problem based on the proposed ILP model. This algorithm enables the problem to be solved more efficiently than previously reported algorithms. New upper bounds are also provided, which are useful in evaluating the quality of heuristic solutions or in generating initial solutions for meta-heuristics. Computational results are reported for a set of 417 test instances of size varying from 6 to 100 nodes including 105 instances from the literature and 312 randomly generated instances. The computational results indicate that instances with up to 24 nodes can be solved optimally in reasonable computational time and the new upper bounds for larger instances significantly improve existing upper bounds.  相似文献   

8.
In this paper, we propose a fast heuristic algorithm for the maximum concurrent k-splittable flow problem. In such an optimization problem, one is concerned with maximizing the routable demand fraction across a capacitated network, given a set of commodities and a constant k expressing the number of paths that can be used at most to route flows for each commodity. Starting from known results on the k-splittable flow problem, we design an algorithm based on a multistart randomized scheme which exploits an adapted extension of the augmenting path algorithm to produce starting solutions for our problem, which are then enhanced by means of an iterative improvement routine. The proposed algorithm has been tested on several sets of instances, and the results of an extensive experimental analysis are provided in association with a comparison to the results obtained by a different heuristic approach and an exact algorithm based on branch and bound rules.  相似文献   

9.
The Routing and Wavelength Assignment problem is a graph optimization problem which deals with optical networks, where communication requests in a network have to be fulfilled. In this paper, we present a multilevel distributed memetic algorithm (ML-DMA) for the static RWA which finds provable optimal solutions for most benchmark instances with known lower bounds and is capable of handling large instances. Components of our ML-DMA include iterated local search, recombination, multilevel scaling, and a gossip-based distribution algorithm. Results demonstrated that our ML-DMA is among the most sophisticated heuristic RWA algorithms published so far.  相似文献   

10.
The complete topology design problem of survivable mesh-based transport networks is to address simultaneously design of network topology, working path routing, and spare capacity allocation based on span-restoration. Each constituent problem in the complete design problem could be formulated as an Integer Programming (IP) and is proved to be NP\mathcal{NP} -hard. Due to a large amount of decision variables and constraints involved in the IP formulation, to solve the problem directly by exact algorithms (e.g. branch-and-bound) would be impractical if not impossible. In this paper, we present a two-level evolutionary approach to address the complete topology design problem. In the low-level, two parameterized greedy heuristics are developed to jointly construct feasible solutions (i.e., closed graph topologies satisfying all the mesh-based network survivable constraints) of the complete problem. Unlike existing “zoom-in”-based heuristics in which subsets of the constraints are considered, the proposed heuristics take all constraints into account. An estimation of distribution algorithm works on the top of the heuristics to tune the control parameters. As a result, optimal solution to the considered problem is more likely to be constructed from the heuristics with the optimal control parameters. The proposed algorithm is evaluated experimentally in comparison with the latest heuristics based on the IP software CPLEX, and the “zoom-in”-based approach on 28 test networks problems. The experimental results demonstrate that the proposed algorithm is more effective in finding high-quality topologies than the IP-based heuristic algorithm in 21 out of 28 test instances with much less computational costs, and performs significantly better than the “zoom-in”-based approach in 19 instances with the same computational costs.  相似文献   

11.
In this paper, a memetic algorithm is developed to solve the orienteering problem with hotel selection (OPHS). The algorithm consists of two levels: a genetic component mainly focuses on finding a good sequence of intermediate hotels, whereas six local search moves embedded in a variable neighborhood structure deal with the selection and sequencing of vertices between the hotels. A set of 176 new and larger benchmark instances of OPHS are created based on optimal solutions of regular orienteering problems. Our algorithm is applied on these new instances as well as on 224 benchmark instances from the literature. The results are compared with the known optimal solutions and with the only other existing algorithm for this problem. The results clearly show that our memetic algorithm outperforms the existing algorithm in terms of solution quality and computational time. A sensitivity analysis shows the significant impact of the number of possible sequences of hotels on the difficulty of an OPHS instance.  相似文献   

12.
In this paper, we study the maximum diversity problem (MDP) which is equivalent to the quadratic unconstrained binary optimization (QUBO) problem with cardinality constraint. The MDP aims to select a subset of elements with given cardinality such that the sum of pairwise distances between any two elements in the selected subset is maximized. For solving this computationally challenging problem, we propose a two-phase tabu search based evolutionary algorithm (TPTS/EA), which integrates several distinguishing features to ensure the diversity and the quality of the evolution, such as a two-phase tabu search algorithm which consists of a dynamic candidate list (DCL) strategy-based traditional tabu search in the first phase and a solution-based tabu search procedure to refine the search in the second phase, and two path-relinking based recombination operators to generate new offspring solutions. Tested on three sets of totally 140 public instances in the literature, the study demonstrates the efficacy of the proposed TPTS/EA algorithm in terms of both solution quality and computational efficiency. Specifically, our proposed TPTS/EA algorithm is able to improve the previous best known results for 2 instances, while matching the previous best-known solutions for 130 instances. We also provide experimental evidences to highlight the beneficial effect of several important components in our TPTS/EA algorithm.  相似文献   

13.
This paper presents a hybrid simulated annealing (SA) and column generation (CG) algorithm for the path-based formulation of the capacitated multicommodity network design (PCMND) problem. In the proposed method, the SA metaheuristic algorithm manages open and closed arcs. Several strategies for adding and dropping arcs are suggested and evaluated. For a given design vector in the proposed hybrid approach, the PCMND problem becomes a capacitated multicommodity minimum cost flow (CMCF) problem. The exact evaluation of the CMCF problem is performed using the CG algorithm. The parameter tuning is done by means of design of experiments approach. The performance of the proposed algorithm is evaluated by solving several benchmark instances. The results of the proposed algorithm are compared with the solutions of CPLEX solver and the best-known method in the literature under different time limits. Statistical analysis proves that the proposed algorithm is able to obtain better solutions.  相似文献   

14.
We present an efficient method for solving approximately both constrained and unconstrained two-dimensional cutting stock problems. The algorithm guarantees a constant approximation ratio for some versions of the problem. The performance of the proposed algorithm is evaluated on several large-scale randomly generated problem instances and on many instances of the literature. Computational results show that our algorithm produces high-quality solutions within reasonable computational times.  相似文献   

15.
Tabu Search for Frequency Assignment in Mobile Radio Networks   总被引:2,自引:0,他引:2  
The main goal of the Frequency Assignment Problem in mobile radio networks consists of assigning a limited number of frequencies to each radio cell in a cellular network while minimizing electromagnetic interference due to the reuse of frequencies. This problem, known to be NP-hard, is of great importance in practice since better solutions will allow a telecommunications operator to manage larger cellular networks. This paper presents a new Tabu Search algorithm for this application. The algorithm is tested on realistic and large problem instances and compared with other methods based on simulated annealing, constraint programming and graph coloring algorithms. Empirical evidence shows that the Tabu algorithm is very competitive by giving the best solutions to the tested instances.  相似文献   

16.
This paper proposes a three-phase matheuristic solution strategy for the capacitated multi-commodity fixed-cost network design problem with design-balance constraints. The proposed matheuristic combines exact and neighbourhood-based methods. Tabu search and restricted path relinking meta-heuristics cooperate to generate as many feasible solutions as possible. The two meta-heuristics incorporate new neighbourhoods, and computationally efficient exploration procedures. The feasible solutions generated by the two procedures are then used to identify an appropriate part of the solution space where an exact solver intensifies the search. Computational experiments on benchmark instances show that the proposed algorithm finds good solutions to large-scale problems in a reasonable amount of time.  相似文献   

17.
In this paper we present a genetic algorithm-based heuristic especially for the weighted maximum independent set problem (IS). The proposed approach treats also some equivalent combinatorial optimization problems. We introduce several modifications to the basic genetic algorithm, by (i) using a crossover called two-fusion operator which creates two new different children and (ii) replacing the mutation operator by the heuristic-feasibility operator tailored specifically for the weighted independent set. The performance of our algorithm was evaluated on several randomly generated problem instances for the weighted independent set and on some instances of the DIMACS Workshop for the particular case: the unweighted maximum clique problem. Computational results show that the proposed approach is able to produce high-quality solutions within reasonable computational times. This algorithm is easily parallelizable and this is one of its important features.  相似文献   

18.
The vehicle routing problem with stochastic demands consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. This paper proposes a simple yet effective heuristic approach that uses randomized heuristics for the traveling salesman problem, a tour partitioning procedure, and a set partitioning formulation to sample the solution space and find high-quality solutions for the problem. Computational experiments on benchmark instances from the literature show that the proposed approach is competitive with the state-of-the-art algorithm for the problem in terms of both accuracy and efficiency. In experiments conducted on a set of 40 instances, the proposed approach unveiled four new best-known solutions (BKSs) and matched another 24. For the remaining 12 instances, the heuristic reported average gaps with respect to the BKS ranging from 0.69 to 0.15 % depending on its configuration.  相似文献   

19.
U-type assembly line is one of the important tools that may increase companies’ production efficiency. In this study, two different modeling approaches proposed for the assembly line balancing problems have been used in modeling type-II U-line balancing problems, and the performances of these models have been compared with each other. It has been shown that using mathematical formulations to solve medium and large size problem instances is impractical since the problem is NP-hard. Therefore, a grouping genetic and simulated annealing algorithms have been developed, and a particle swarm optimization algorithm is adapted to compare with the proposed methods. A special crossover operator that always obtains feasible offspring has been suggested for the proposed grouping genetic algorithm. Furthermore, a local search procedure based on problem-specific knowledge was applied to increase the intensification of the algorithm. A set of well-known benchmark instances was solved to evaluate the effectiveness of the proposed and existing methods. Results showed that while the mathematical formulations can only be used to solve small size instances, metaheuristics can obtain high quality solutions for all size problem instances within acceptable CPU times. Moreover, grouping genetic algorithm has been found to be superior to the other methods according to the number of optimal solutions, or deviations from the lower bound values.  相似文献   

20.
In this paper the authors address a pressurized water distribution network design problem for irrigation purposes. Two mixed binary nonlinear programming models are proposed for this NP-hard problem. Furthermore, a heuristic algorithm is presented for the problem, which considers a decomposition sequential scheme, based on linearization of the second model, coupled with constructive and local search procedures designed to achieve improved feasible solutions. To evaluate the robustness of the method we tested it on several instances generated from a real application. The best solutions obtained are finally compared with solutions provided by standard software. These computational experiments enable the authors to conclude that the decomposition sequential heuristic is a good approach to this difficult real problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号