首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孟祥松  张福民  曲兴华 《物理学报》2015,64(23):230601-230601
调频连续波激光测距方法可以实现高精度的大尺寸绝对距离测量, 且测量过程无需合作目标, 在大空间坐标精密测量领域有很高的研究价值. 而如何提高测量分辨率和实用化一直是近年来调频连续波激光绝对测距研究的热点. 本文研究了调频连续波激光测距的原理, 基于双光路调频连续波激光测距系统, 提出了通过信号拼接提高测量分辨率的信号处理优化方案, 该方案可以提高测距分辨率, 且可以降低对激光器的性能要求; 提出了可实现高速测量的简易测量方法. 设计加工了双光路光纤调频连续波激光测距系统, 利用该系统进行了测距分辨率及测距误差标定实验, 实验结果表明: 优化方案可以有效地提高测量分辨率和测量效率, 在26 m测量范围内, 测距分辨率达到了50 μm, 测距误差不超过100 μm; 快速测量方案有较高实用价值.  相似文献   

2.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

3.
介绍了一种用于在线检测纳米定位平台的全自动六维纳米测量系统。提出了整波长干涉测量方法,可以避免激光干涉仪的非线性影响,使系统能够得到准确校准,达到纳米级精度。该测量系统可以测定6个自由度,三维直线运动测量范围为100μm×100μm×100μm,分辨率能够达到1nm以下。  相似文献   

4.
He Guotian  Liao Changrong  Yuangang Lu 《Optik》2009,120(11):553-557
In this paper, we propose a sinusoidal phase modulating (SPM) interferometer that is insensitive to external disturbances, and its measuring principle is analyzed theoretically. In the SPM interferometer, the interference signal is detected by a high-speed image sensor based on a low-speed CCD and a signal processing circuit is used to obtain the phase of each point on the surface. Therefore, the surface profile can be measured real-time. The experiments measuring the surface profile of a wedge-shaped optical flat show that the measurement time of the SPM interferometer is less than 10 ms, the repetitive measurement accuracy is 4.2 nm. The results show that the impacts of nonlinear distortion of the piezoelectric transducer (PZT) and part external disturbance are removed.  相似文献   

5.
申劭萌  马军  何煦 《应用光学》2011,32(6):1173-1179
 为满足光学系统对高精度检测的要求,依据一种新型便携式干涉仪的设计方案,研究了装调方法。该型干涉仪基于改进的泰曼-格林光路结构,其设计测试精度达到λ/10(P-V,λ=630 nm),具有参考镜离轴、体积小巧、便携、精度较高、成本低及便于批量装备等新特点。针对该新型干涉仪的结构特点,研究了以两个互相垂直的光轴为基准对整体结构进行装调的新方法,并用装调完善的干涉仪进行了实测试验和比对试验。试验结果表明,该新型干涉仪器对已知面型精度为λ/10(P-V,λ=630 nm)的标准球面镜进行检测,其精度可达到0.09 λ;在相同的测试条件下进行比对实验时,该新型干涉仪对普通标准球面镜的检测结果为0.053 λ(RMS,λ=630 nm),ZYGO干涉仪的检测结果为0.051 λ(RMS,λ=632.8 nm),两者测量能力较为接近。采用新装调方法进行装调的该新型便携式干涉仪的实际检测精度达到了设计要求,新装调方法可以满足该新型干涉仪的指标要求。  相似文献   

6.
通过对该系统采集到的法布里-珀罗(F-P)标准具透射谱和光纤布拉格光栅(FBG)传感器反射谱进行寻峰算法以及拟合算法的研究,采用C语言编程和LabVIEW编程相结合的方式,实现了FBG波长信号的解调。其中,由于系统采集到的F-P透射谱和FBG反射谱线时域信号数据都由离散点构成,且在3dB带宽内均符合高斯曲线分布,采用高斯拟合对采集到的信号数据进行寻峰处理,提高系统精度;又由于分布式反馈(DFB)激光器的波长扫描存在着一定的非线性,采用二项式拟合对DFB激光器的波长扫描曲线进行拟合,以降低其非线性导致的误差。另外,设置一路标准FBG传感通道用于波长校准。实验研究表明该系统稳定性良好,波长测量范围为1 550.012~1 554.812nm,分辨力为1pm,精度为±10pm,验证了该系统可用于FBG波长信号检测的可行性。  相似文献   

7.
We describe an interferometric technique for the demodulation of serial fibre Bragg grating sensor arrays, yielding absolute measurement of the individual grating mean wavelengths. The composite beam reflected from the array illuminates a scanning Michelson interferometer but, in contrast to spectral measurement by Fourier Transform Spectroscopy, our technique requires an OPD scan far shorter than the coherence length of the grating reflections. The technique is based on the high-resolution measurement of the phases of the complex analytic signals and of the relationship of these phases to interferometric delay. The analytic signals are derived via the Hilbert transform, allowing frequency domain filtering of individual signals within the signal processing. The technique has yielded a resolution of 0.007 nm for an OPD scan of 1.2 mm.  相似文献   

8.
An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.  相似文献   

9.
《Optik》2011,122(10):868-871
We created a simple device for the measurement of nanoscale displacements consisting in a Twyman-Green interferometer with one mirror having a slight offset in the horizontal plane with respect to the direction perpendicular to the incoming beam and one mobile mirror, a CCD array camera that captures frames of fringes (interferograms) generated by the interferometer and a software that acquires the interferograms captured by the camera and fits the fringes in order to determine the initial spatial phase of the series of fringes and, consequently, to monitor the movement of the mobile arm of the interferometer. Because the interferograms were acquired and analyzed sequentially, the algorithm could be parallelized easily on a multiprocessor/multicore platform. The device can work in real-time in which case the maximum speed of the mobile arm of the interferometer for which we can obtain unambiguous results is 30 λ/8/s, which is, assuming a He-Ne laser as the light source, almost 2.5 μm/s. In real-time conditions, the precision and accuracy of the measurement are low. In stationary conditions, however, the precision was determined to be below 1 nm.  相似文献   

10.
Wu  C.-M.  Lin  S.-T.  Fu  J. 《Optical and Quantum Electronics》2002,34(12):1267-1276
An interferometer having accuracy in displacement measurement of <1 nm is necessary in nanometrology. To meet the requirement, the periodic nonlinearity mainly caused by polarization and frequency mixings should be less than deep sub-nanometer. In this paper, two spatial-separated polarization beams are used to avoid mixings and then the periodic nonlinearity. The developed interferometer demonstrates a periodic nonlinearity of about 25 pm and a 2 pm/Hz in displacement noise level.  相似文献   

11.
Guotian He  Xiangzhao Wang 《Optik》2009,120(3):101-105
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS.  相似文献   

12.
介绍了基于几何莫尔条纹原理和衍射干涉原理的两种光栅精密位移测量系统及各自的特点。综述了国内外对光栅干涉式精密位移测量系统的研究进展,总结了系统存在的关键问题及发展趋势。光栅干涉式精密位移测量系统的优点是对环境要求小,测量分辨率和精度较高,结构紧凑,成本低。该系统需要解决的问题包括提高光栅以及光学元器件制造和安装精度;寻求一种更高精度的检测手段对光栅位移测量系统进行标定等。光栅干涉式精密位移测量系统的发展方向为更高测量分辨率和精度,大量程、多维度测量以及尺寸小巧。该系统在现代工业加工精密制造领域将具有更广阔的应用前景。  相似文献   

13.
This study develops a high-precision, non-destructive measurement technique based on a laser interferometer for determining the alcohol concentration of a liquid solution from its refractive index. The optical metrology system is employed to measure the refractive indexes of samples with known alcohol concentrations ranging from 5% to 95%. By applying regressional analysis to the experimental results, an analytical expression is derived to describe the quadratic relationship between the refractive index and the alcohol concentration. An excellent agreement is observed between the experimentally determined values of the alcohol concentration and the analytically predicted results. For an assumed laser interferometer resolution of 1 nm, the measurement resolution of the proposed metrology system is found to be at least F = 0.0025%, which is significantly better than that of typical stereometry methods (approximately 1.0%) Furthermore, it is shown that the measurement resolution improves as the alcohol concentration reduces.  相似文献   

14.
An approach to optimize the design of the long-period grating pair as a temperature sensor device is presented, implemented by using a long-period grating (LPG) pair with a small separation (of around 2 mm) and scaling down their physical length by a factor greater than 2. The technique allows the interferometer formed not only to measure temperature variations over distances as small as the overall length of the grating pair (18 mm) but also to reduce the cladding losses between the LPGs forming the pair. This approach enhances the sharpness of the interference fringes (IFs) and the pits (Pts) in the transmission spectrum and, as a result, a high resolution sensor is obtained. The LPG pair is fabricated in the appropriate photosensitive single mode/core fibres, without being restricted to the use of dual core or other special fibres, thus exploiting the sensitivities of various fibres and reducing the overall system cost. In this work, the effectiveness of this technique is demonstrated by fabricating a small-scale LPG pair in a boron-germanium co-doped single mode fibre, with particular attention being paid to the higher order cladding modes. The sensitivity of the device thus created is 0.31 nm/°C with a root-mean-square (rms) deviation of 0.28 nm in the wavelength measurement, which corresponds to a temperature variation of approximately 0.9 °C. This was achieved while using a relatively low-resolution (0.6 nm) Optical Spectrum Analyzer to detect the wavelength changes of the device and was further improved to 0.7 °C when using an OSA with a resolution of 0.1 nm.  相似文献   

15.
楔块调整式Talbot干涉仪改变写入Bragg波长的调谐误差   总被引:1,自引:1,他引:0  
在楔块调整式Talbot干涉仪中,光纤Bragg光栅的写入区为直接由相位模板衍射的±1级衍射光束形成的干涉条纹的近场干涉区,和由±1级衍射光束经两平面镜反射后形成的可调谐写入Bragg波长的干涉条纹的远场干涉区。在改变写入光纤光栅Bragg波长的过程中,光纤光栅的Bragg波长是由平面镜的交叉角决定的,而且,影响调谐精度的三种主要因素被控制在光纤光栅生产允许的范围内,即推动机构的位移误差系数Cd为~-0.08nm/μm,楔块的倾斜误差系数Cα为-0.15~0.23nm/(′),和转动机构的传动角误差系数Cβ为~-0.08nm/(′)。  相似文献   

16.
A novel method is presented for one-dimensional (1-D) and two-dimensional (2-D) in-plane displacements measurement that is based on the heterodyne grating interferometry. The novel setup of the optical configuration reduces the airstreams disturbance and maintains the environmental vibration at minimum level, allowing high stability and low measurement error to be achieved. Resulting from the theoretical calculation, our method can be sensitive to the sub-picometer level. With highly controlled isolation system, the low frequency noise can be reduced to minimum level, and only high frequency noises are considered, our method can achieve the resolution about 0.5 nm within 250 μm displacement. In addition, 2-D in-plane displacement measurement can be accomplished with a single interferometer simultaneously.  相似文献   

17.
在一段8cm长的保偏光纤两端分别熔接两段普通的单模光纤,在保偏光纤的侧面均匀地镀上一层聚二甲基硅氧烷材料,聚二甲基硅氧烷材料经该段保偏光纤接入到一个光纤耦合器中,从而形成一个光纤Sagnac干涉仪.聚二甲基硅氧烷材料吸附挥发性有机物分子时,会引起聚二甲基硅氧烷材料体积上的膨胀,导致Sagnac干涉波长的漂移,通过对Sagnac干涉光波长漂移的测量即可实现对挥发性有机物气体的检测.实验测量了传感器对挥发性有机物浓度的响应,结果表明,在0~6 000ppm浓度范围内,传感器的灵敏度为1.03pm/ppm,由光谱仪的最小分辨率为0.02nm可知,该传感器对挥发性有机物的检测下限约为19.4ppm.该传感器相比聚二甲基硅氧烷材料与光纤光栅结合的传感器,灵敏度提高了4 300倍.  相似文献   

18.
A sensor head consisting of a photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature. The MZI fabricated by splicing a short length of PCF between two single-mode fibers with the air-hole structure that completely collapsed near the splicing points, is sensitive to fiber bending and surrounding temperature, while the FBG is only sensitive to the later. Simultaneous measurement of curvature and temperature is therefore obtained. Sensitivities of 4.06 nm/m− 1 and 6.30 pm/°C are achieved experimentally for curvature and temperature, respectively. And the corresponding resolutions are 5.2 × 10− 4 m− 1 and 1.25 °C for curvature and temperature, respectively, based on the wavelength measurement resolution of 10 pm.  相似文献   

19.
For the first time the fibre laser constructed from a polymer optical fibre Bragg grating is reported. The single frequency laser with the peak power of −5 dBm and signal to noise ratio greater than 45 dB has been achieved. Further examination demonstrates the excellent characteristics of the fibre laser. First, the fibre laser can be easily tuned over 35 nm by the simple axial tension method. Second, the fibre laser has the high strain sensitivity of 1.48 pm/με with the dynamic measurement range as large as 2.37%.  相似文献   

20.
基于全局最小二乘拼接算法和图像融合算法建立了连续相位板(CPP)子孔径拼接检测算法,并根据全局相关匹配原理提出采用面形残差来评价CPP的加工面形。采用高精度动态干涉仪等设备建立了相应的检测系统,并针对430 mm430 mm口径CPP开展了数值模拟和检测实验。理论计算结果表明:系统计算误差为0.005 nm。实验结果表明,整个检测系统软硬件RMS误差小于5 nm,基本满足CPP面形检测要求。从而验证了CPP检测和评价的正确性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号