首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiazole synthase (ThiG) catalyzes an Amadori-type rearrangement of 1-deoxy-d-xylulose-5-phosphate (DXP) via an imine intermediate. In support of this, we have demonstrated enzyme-catalyzed exchange of the C2 carbonyl of DXP. Borohydride reduction of the enzyme DXP imine followed by top-down mass spectrometric analysis localized the imine to lysine 96. On the basis of these observations, a new mechanism for the biosynthesis of the thiazole phosphate moiety of thiamin pyrophosphate in Bacillus subtilis is proposed. This mechanism involves the generation of a ketone at C3 of DXP by an Amadori-type rearrangement of the imine followed by nucleophillic addition of the sulfur carrier protein (ThiS-thiocarboxylate) to this carbonyl group.  相似文献   

2.
Thiamin thiazole biosynthesis in eukaryotes is still not completely understood. In this report, a late intermediate, tightly bound to the active site of the Saccharomyces cerevisiae thiazole synthase, was identified as an adenylated thiazole tautomer. The reactivity of this unusual compound was evaluated. Its identification provides an additional molecular snapshot of the complex reaction sequence catalyzed by the eukaryotic thiazole synthase and identifies the final step of the thiamin-thiazole biosynthesis.  相似文献   

3.
4.
In many bacteria tenI is found clustered with genes involved in thiamin thiazole biosynthesis. However, while TenI shows high sequence similarity with thiamin phosphate synthase, the purified protein has no thiamin phosphate synthase activity, and the role of this enzyme in thiamin biosynthesis remains unknown. In this contribution, we identify the function of TenI as a thiazole tautomerase, describe the structure of the enzyme complexed with its reaction product, identify the substrates phosphate and histidine 122 as the acid/base residues involved in catalysis, and propose a mechanism for the reaction. The identification of the function of TenI completes the identification of all of the enzymes needed for thiamin biosynthesis by the major bacterial pathway.  相似文献   

5.
Thiazole synthase catalyzes the formation of the thiazole moiety of thiamin pyrophosphate. The enzyme from Saccharomyces cerevisiae (THI4) copurifies with a set of strongly bound adenylated metabolites. One of them has been characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid. Attempts toward yielding active wild-type THI4 by releasing protein-bound metabolites have failed so far. Here, we describe the identification and characterization of two partially active mutants (C204A and H200N) of THI4. Both mutants catalyzed the release of the nicotinamide moiety from NAD to produce ADP-ribose, which was further converted to ADP-ribulose. In the presence of glycine, both the mutants catalyzed the formation of an advanced intermediate. The intermediate was trapped with ortho-phenylenediamine, yielding a stable quinoxaline derivative, which was characterized by NMR spectroscopy and ESI-MS. These observations confirm NAD as the substrate for THI4 and elucidate the early steps of this unique biosynthesis of the thiazole moiety of thiamin in eukaryotes.  相似文献   

6.
Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the central region using primers to conserved domains and by genome walking. CbXYL1 has an open reading frame of 966 bp encoding 321 amino acids. The C. boidinii XYL1p is highly similar to other known yeast aldose reductases and is most closely related to the NAD(P)H-linked XYL1p of Kluyveromyces lactis. Cell homogenates from C. boidinii and recombinant Saccharomyces cerevisiae were tested for XYL1p activity to confirm the previously reported high ratio of NADH:NADPH linked activity. C. boidinii grown under fully aerobic conditions showed an NADH:NADPH activity ratio of 0.76, which was similar to that observed with the XYL1p from Pichia stipitis XYL1, but which is much lower than what was previously reported. Cells grown under low aeration showed an NADH:NADPH activity ratio of 2.13. Recombinant S. cerevisiae expressing CbXYL1 showed only NADH-linked activity in cell homogenates. Southern hybridization did not reveal additional bands. These results imply that a second, unrelated gene for XYL1p is present in C. boidinii.  相似文献   

7.
8.
9.
In Saccharomyces cerevisiae , thiamin pyrimidine is formed from histidine and pyridoxal phosphate (PLP). The origin of all of the pyrimidine atoms has been previously determined using labeling studies and suggests that the pyrimidine is formed using remarkable chemistry that is without chemical or biochemical precedent. Here we report the overexpression of the closely related Candida albicans pyrimidine synthase (THI5p) and the reconstitution and preliminary characterization of the enzymatic activity. A structure of the C. albicans THI5p shows PLP bound at the active site via an imine with Lys62 and His66 in close proximity to the PLP. Our data suggest that His66 of the THI5 protein is the histidine source for pyrimidine formation and that the pyrimidine synthase is a single-turnover enzyme.  相似文献   

10.
Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae (S. cerevisiae), has been found to enhance immune functions. At present study, we developed an optimal procedure to extract and purify beta-glucan. At first, yeast cells were grown in sabouraud dextrose agar and then cultured in yeast extract-peptone-glucose (YPG) broth. After incubation, cells were harvested, washed and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble beta-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. This preparation contained 2.4% protein. In the next step, DEAE sephacel chromatography was used to remove remaining proteins (glucan-S2). Subsequently this preparation was applied into concanavalin-A sepharose column to remove manann. Finally, beta-glucan free of mannoprotein complexes was prepared (glucan-S3).  相似文献   

11.
12.
13.
We present methods for the determination of UVA-induced binding of 8-methoxypsoralen (8-MOP) to nucleic acids and protein and for a quantitative assay of radioactively labelled 8-MOP plus UVA induced DNA photoproducts in the yeast Saccharomyces cerevisiae. For the dose range up to 60 kJ m-2, with a wild-type survival of 1% or higher, binding to DNA is 100-fold and to RNA 10- to 20-fold more efficient than that to protein. Between 20% and 65% of the 8-MOP binds to macromolecules that are neither nucleic acids nor protein. The number of DNA-bound 8-MOP molecules for the haploid genome rises from 14 (unirradiated control) to 349 at the highest UVA exposure dose (60 kJ m-2). Gel chromatography reveals three types of DNA thymine photoproduct, the pyrone-side monoadducts, the furan-side monoadducts and the diadducts. Among these, pyrone-side monoadducts always constitute the smallest fraction, regardless of whether the treatment is with in vitro or in vivo 8-MOP plus UVA.  相似文献   

14.
Biotransformation processes have been successfully utilized to obtain products of pharmaceutical, chemical, food, and agricultural interest, which are difficult to obtain by classic chemical methods. The compound with antituberculous activity, 9-methoxy-tariacuripyrone (1), isolated from Aristolochia brevipes, was submitted to biotransformation with the yeast Saccharomyces cerevisiae under culture, yielding 5-amino-9-methoxy-3,4-dihydro-2H-benzo[h]chromen-2-one (2). The structure of (2) was elucidated on the basis of spectroscopic analyses. The results mainly show the reduction of the double bond and the nitro group of compound (1). Metabolite (2) demonstrated an increase in anti-tuberculous activity (MIC = 3.12 μg/mL) against the drug-sensitive Mycobacterium tuberculosis (H37Rv) strain, with respect to that shown by (1).  相似文献   

15.
Zhao J  Wang Z  Wang M  Wang H  He Q  Zhang H 《Talanta》2008,74(5):1686-1691
This study describes interaction mechanism between menadione and the yeast with the aid of the catabolite assay and the culture fluorescence method, with a view towards exploitting the potential of the mediator in toxicology study. Double mediator system containing menadione and the hydrophilic mediator, ferricyanide, was employed for evaluating the toxic effects of furfural on the yeast and the results showed the well consistence between the MICREDOX method and the conventional method.  相似文献   

16.
The biosynthesis of the potent environmental carcinogen aflatoxin B(1) is initiated by norsolorinic acid synthase (NorS), a complex of an iterative type I polyketide synthase and a specialized yeast-like pair of fatty acid synthases. NorS has been partially purified from Aspergillus parasiticus, has been found to have a mass of approximately 1.4 x 10(6) Da, and carries out the synthesis of norsolorinic acid in the presence of acetylCoA, malonylCoA, and NADPH where hexanoylCoA is not a free intermediate. The N-acetylcysteamine thioester of hexanoic acid can substitute for the catalytic functions of HexA/B to initiate norsolorinic acid synthesis by the complex in the presence of only malonylCoA. An alpha(2)beta(2)gamma(2) stoichiometry is proposed for NorS in keeping with its estimated mass and the observed dimeric or higher-order quarternary structures of PKS and FAS enzymes.  相似文献   

17.
Lu C  Li Q  Chen S  Zhao L  Zheng Z 《Talanta》2011,85(1):476-481
In this study, gold nanorods were firstly found to exhibit a tremendously higher catalytic activity towards luminol chemiluminescence (CL) than spherical gold nanoparticles. More importantly, ultra-trace aminothiols can cause a great CL decrease in the gold nanorod-catalyzed luminol system by the formation of Au-S covalent bonds on the ends of gold nanorods. Aminothiols can occupy the active sites of gold nanorods, and further interrupt the generation of the active oxygen intermediates. Other biomolecules including 19 standard amino acids, alcohols, organic acids and saccharides have no effect on gold nanorod-catalyzed luminol CL signals. Moreover, in order to evaluate the applicability and reliability of the proposed method, it was applied to the determination of glutathione in the cell extracts of Saccharomyces cerevisiae. Good agreements were obtained for the determination of glutathione in the cell extracts of S. cerevisiae between the present approach and a standard Alloxan method. The recoveries of glutathione were found to fall in the range between 96 and 105%. The calibration curve for glutathione was found to be linear from 0.05 to 100 nM, and the detection limit (S/N = 3) was 0.01 nM. The relative standard deviation (RSD) for five repeated measurements of 5.0 nM glutathione was 2.1%.  相似文献   

18.
ABSTRACT: BACKGROUND: The Gtr1protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. The Switch regions in Gtr1 mediate activation of the TORC1 complex [R. Gong, L. Li, Y. Liu, P. Wang, H. Yang, L. Wang, J. Cheng, K.L. Guan, Y. Xu, Genes Dev. 25 (2011) 1668-1673]. Therefore, knowledge about the biochemical activity is required to understand its mode of action and regulation. RESULTS: Here we employ tryptophan fluorescence analysis and radioactive GTPase assays to demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant. CONCLUSIONS: The extremely low intrinsic GTPase activity and distinct conformations upon nucleotide binding imply a strict regulation of Gtr1. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.  相似文献   

19.
BACKGROUND: The polyene macrolide amphotericin B is produced by Streptomyces nodosus ATCC14899. Amphotericin B is a potent antifungal antibiotic and has activity against some viruses, protozoans and prions. Treatment of systemic fungal infections with amphotericin B is complicated by its low water-solubility and side effects which include severe nephrotoxicity. Analogues with improved properties could be generated by manipulating amphotericin biosynthetic genes in S. nodosus. RESULTS: A large polyketide synthase gene cluster was cloned from total cellular DNA of S. nodosus. Nucleotide sequence analysis of 113193 bp of this region revealed six large polyketide synthase genes as well as genes for two cytochrome P450 enzymes, two ABC transporter proteins, and genes involved in biosynthesis and attachment of mycosamine. Phage KC515-mediated gene disruption was used to show that this region is involved in amphotericin production. CONCLUSIONS: The availability of these genes and the development of a method for gene disruption and replacement in S. nodosus should allow production of novel amphotericins. A panel of analogues could lead to identification of derivatives with increased solubility, improved biological activity and reduced toxicity.  相似文献   

20.
New aromatic diamines containing phenyl-pendant thiazole units were synthesized in three steps starting from p-nitrobenzyl phenyl ketone. Novel aromatic polyamides containing phenyl-pendant thiazole units were prepared by the low-temperature solution polyconden-sation of 1,4- (or 1.3-) bis[5-(p-aminophenyl)-4-phenyl-2-thiazolyl] benzene with various aromatic dicarboxylic acid chlorides in N,N-dimethylacetamide. High molecular weight polyamides having inherent viscosities of 0.5–3.0 dL/g were obtained quantitatively. The polythiazole-amides with m-phenylene, 4,4′-oxydiphenylene, and 4,4′-sulfonyldiphenylene units were soluble in N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and pyridine, and gave transparent flexible films by casting from the solutions. These organic solvent-soluble polyamides displayed prominent glass transition temperatures (Tg) between 257 and 325°C. On the other hand, the polythiazole-amides with p-phenylene and 4,4′-biphenylene units were insoluble in most organic solvents, and had no observed Tg. All the polythiazole-amides started to decompose at about 400°C with 10% weight loss being recorded at 450–525°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号