首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many bacteria tenI is found clustered with genes involved in thiamin thiazole biosynthesis. However, while TenI shows high sequence similarity with thiamin phosphate synthase, the purified protein has no thiamin phosphate synthase activity, and the role of this enzyme in thiamin biosynthesis remains unknown. In this contribution, we identify the function of TenI as a thiazole tautomerase, describe the structure of the enzyme complexed with its reaction product, identify the substrates phosphate and histidine 122 as the acid/base residues involved in catalysis, and propose a mechanism for the reaction. The identification of the function of TenI completes the identification of all of the enzymes needed for thiamin biosynthesis by the major bacterial pathway.  相似文献   

2.
Thiazole synthase catalyzes the formation of the thiazole moiety of thiamin pyrophosphate. The enzyme from Saccharomyces cerevisiae (THI4) copurifies with a set of strongly bound adenylated metabolites. One of them has been characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid. Attempts toward yielding active wild-type THI4 by releasing protein-bound metabolites have failed so far. Here, we describe the identification and characterization of two partially active mutants (C204A and H200N) of THI4. Both mutants catalyzed the release of the nicotinamide moiety from NAD to produce ADP-ribose, which was further converted to ADP-ribulose. In the presence of glycine, both the mutants catalyzed the formation of an advanced intermediate. The intermediate was trapped with ortho-phenylenediamine, yielding a stable quinoxaline derivative, which was characterized by NMR spectroscopy and ESI-MS. These observations confirm NAD as the substrate for THI4 and elucidate the early steps of this unique biosynthesis of the thiazole moiety of thiamin in eukaryotes.  相似文献   

3.
Thiazole synthase (ThiG) catalyzes an Amadori-type rearrangement of 1-deoxy-d-xylulose-5-phosphate (DXP) via an imine intermediate. In support of this, we have demonstrated enzyme-catalyzed exchange of the C2 carbonyl of DXP. Borohydride reduction of the enzyme DXP imine followed by top-down mass spectrometric analysis localized the imine to lysine 96. On the basis of these observations, a new mechanism for the biosynthesis of the thiazole phosphate moiety of thiamin pyrophosphate in Bacillus subtilis is proposed. This mechanism involves the generation of a ketone at C3 of DXP by an Amadori-type rearrangement of the imine followed by nucleophillic addition of the sulfur carrier protein (ThiS-thiocarboxylate) to this carbonyl group.  相似文献   

4.
Thiamin thiazole biosynthesis in eukaryotes is still not completely understood. In this report, a late intermediate, tightly bound to the active site of the Saccharomyces cerevisiae thiazole synthase, was identified as an adenylated thiazole tautomer. The reactivity of this unusual compound was evaluated. Its identification provides an additional molecular snapshot of the complex reaction sequence catalyzed by the eukaryotic thiazole synthase and identifies the final step of the thiamin-thiazole biosynthesis.  相似文献   

5.
Thiamin-pyrophosphate is an essential cofactor in all living systems. The biosynthesis of both the thiazole and the pyrimidine moieties of this cofactor involves new biosynthetic chemistry. Thiazole-phosphate synthase (ThiG) catalyses the formation of the thiazole moiety of thiamin-pyrophosphate from 1-deoxy-D-xylulose-5-phosphate (DXP), dehydroglycine and the sulfur carrier protein (ThiS), modified on its carboxy terminus as a thiocarboxylate (ThiS-thiocarboxylate). Thiazole biosynthesis is initiated by the formation of a ThiG/DXP imine, which then tautomerizes to an amino-ketone. In this paper we study the sulfur transfer from ThiS-thiocarboxylate to this amino-ketone and trap a new thioenolate intermediate. Surprisingly, thiazole formation results in the replacement of the ThiS-thiocarboxylate sulfur with an oxygen from DXP and not from the buffer, as shown by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) using (18)O labeling of the 13C-, 15N-depleted protein. These observations further clarify the mechanism of the complex thiazole biosynthesis in bacteria.  相似文献   

6.
The elucidation of the biosynthetic pathway to thiamin (Vitamin B1) and its pyrophosphate ester, the important coenzyme “cocarboxylase”, has challenged researchers for many years and continues to do so. The problem of the origin of thiamin can be separated into three parts: the independent pathways to the pyrimidine moiety 4-amino-5-hy-droxymethyl-2-methylpyrimidine and to the thiazole moiety 5-(2-hydroxyethyl)-4-methylthiazole, and the route from these subunits to the vitamin. The steps in the latter process were fully established some twenty years ago, and it was shown that the route in aerobic bacteria and yeast differs to some extent from that in enteric bacteria. The pathways to the subunits, on the other hand, are still not clarified. Significant differences exist in the routes whereby each of the two subunits, the pyrimidine moiety and the thiazole moiety, originate in bacteria and yeast. One difficulty that delayed progress was that the incorporation patterns of labeled precursors, which were observed by different research groups in different microorganisms, could not be reconciled on the basis of a single pathway to each of the two subunits. It is now accepted that in each case different pathways exist in enteric bacteria and yeast, and that the biosynthesis of Vitamin B1 represents an instance of biochemical diversity. A second factor that added to the difficulties is the minute amount of thiamin synthesized in microbiological cultures (about 15 μg per L culture). This limited the investigations until very recently either to the use of radioactive tracers or to the use of stable isotopes in conjunction with mass spectrometric analysis. It is widely recognized that both methods are associated with pitfalls in the interpretation of results. High-field 13C NMR, the most powerful modern method available for the determination of incorporation patterns, has only very recently been successfully employed in investigations of thiamin biosynthesis. As a result of the conceptual and experimental problems, even the primary precursors of each of the two relatively simple heterocyclic subunits of thiamin are still not completely established. A search for committed intermediates, the study of the enzymes, and identification of the genes that are involved are the matter of current research.  相似文献   

7.
Nitration of 4-methyl-2-[2-(nitro-2-furyl)vinyl]thiazole with a mixture of concentrated nitric and sulfuric acids leads to 4-methyl-5-nitro-2-[2-(3,5-dinitro-2-furyl)vinyl]thiazole. Under the same conditions 2-methyl- and 2-acetamido-4-[1-R-2-(5-nitro-2-furyl)vinyl]thiazoles (R=CH3, Cl) are nitrated in the 3 position of the furan ring, 2-amino-4-[1-chloro-2-(5-nitro-2-furyl)vinyl]thiazole is nitrated in the 5 position of the thiazole ring and 2-acetamido-5-nitro-4-[2-(2-furyl)vinyl]thiazole undergoes profound changes. Under the influence of a mixture of of nitric acid and acetic anhydride the latter compound is converted quantitatively to the 5-nitro derivative (with respect to the furan ring), whereas 4-[2-(5-nitro-2-furyl)vinyl]thiazole derivatives do not undergo reaction.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 314–317, March, 1977.  相似文献   

8.
Treatment of 2-trifluoroacetamido-4-(trifluoromethyl)thiazole with two equivalents of n-butyllithium at -78° produced the thiazole dianion 5 in situ, which reacted preferentially at the 5-position with a variety of electrophiles. These electrophiles include: an aldehyde, ketone, chloroformate, acid chloride, phosphorus oxychloride, silicon chloride, and disulfide. Dianion 5 also combined with dibromodifluoromethane at -98° to give the corresponding 5-(bromodifluoromethyl)thiazole 7 , which is an unusual reaction for an aromatic or heteroaromatic system. Compound 7 was converted to a 4,5-bis-(trifluoromethyl)thiazole 8 using tetrabutylammonium fluoride.  相似文献   

9.
Fluorescent properties of oligonucleotide-conjugated thiazole orange probes   总被引:1,自引:0,他引:1  
The fluorescence properties of thiazole orange, linked via a (1) hydrophobic alkyl or a (2) hydrophilic ethylene glycol chain to the central internucleotidic phosphate group of a pentadeca-2'-deoxyriboadenylate (dA15), are evaluated. Linkage at the phosphate group yields two stereoisomers, S-isomer of the phosphorus chiral center (Sp) and R-isomer of the phosphorus chiral center (Rp); these are studied separately. The character of the linkage chain and the chirality of the internucleotidic phosphate linkage site influence the fluorescent properties of these thiazole orange-oligonucleotide conjugates (TO-probes). Quantum yields of fluorescence (phifl) of between 0.04 and 0.07 were determined for the single-stranded conjugates. The fluorescence yield increased by up to five times upon hybridization with the complementary sequence (d5'[CACT15CAC3']); (phifl values of between 0.06-0.35 were determined for the double-stranded conjugates. The phifl value (0.17) of thiazole orange, 1-(N,N'-trimethylaminopropyl)-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]-quinolinium iodide (TO-Pro 1) in the presence of the oligonucleotide duplex (TO-Pro 1: dA15.d5'[CACT15CAC3'] (1:1)) is much less than that for some of the hybrids of the conjugates. Our studies, using steady-state and time-resolved fluorescence experiments, show that a number of discrete fluorescent association species between the thiazole orange and the helix are formed. Time-resolved studies on the four double-stranded TO-probes revealed that the fluorescent oligonucleotide-thiazole orange complexes are common, only the distribution of the species varies with the character of the chain and the chirality at the internucleotidic phosphate site. Those TO-probes in which the isomeric structure of the phosphate-chain linkage is Rp, and therefore such that the fluorophore is directed toward the minor groove, have higher phifl values than the Sp isomer. Of the systems studied, thiazole orange linked by an alkyl chain to the internucleotidic phosphate (Rp isomer) has the highest phifl and the greatest fraction of the longest-lived fluorescent thiazole orange species (in the hybrid form).  相似文献   

10.
Three pyochelin analogues and their methyl esters all containing a thiazole ring have been synthesised from the same Weinreb amide key intermediate. One of these analogues called HPTT-COOH, a molecule released in the course of pyochelin and yersiniabactin biosynthesis, was efficiently synthesised using a new base induced conversion of the key compound 2′-(2-hydroxyphenyl)-2′-thiazoline-4′-(N-methoxy,N-methyl) carboxamide into 2′-(2-hydroxyphenyl)-2′-thiazole-4′-(N-methoxy,N-methyl) carboxamide.  相似文献   

11.
A convenient method for the synthesis of previously inaccessible monothiooxamides of the thiazole series was developed. The method is based on the reaction of pyridinium salts obtained from 2-(chloroacetylamino)thiazole and pyridine with a solution of elemental sulfur and amines prepared beforehand.  相似文献   

12.
Zeolite H-beta facilitated the reaction of α-chloro acetyl chloride with 1,2-bis-trimethyl silyl acetylene to give 1-chloro-4-(trimethylsilyl)but-3-yn-2-one which on treatment with thioacetamide afforded 2-methyl-4-[(trimethylsilyl)ethynyl]thiazole. l-Proline on the other hand facilitated the coupling reaction of 2-methyl-4-[(trimethylsilyl)ethynyl]thiazole with (hetero)aryl halides (modified Sonogashira reaction) under Pd-Cu catalysis in the presence of aqueous K2CO3 affording an improved method for the synthesis of corresponding 4-alkynyl substituted thiazole derivatives.  相似文献   

13.
Abstract

To explore a new skeleton with nematicidal activity, a series of novel azabicyclo derivatives containing a thiazole moiety were designed, synthesized and evaluated for their nematicidal activities. The bioassay results against pine-wood nematodes (Bursaphelenchus xylophilus) showed that most of the title compounds displayed nematicidal activity at a concentration of 40?mg/L. Especially, the title compounds2-((8-methyl-8-azabicyclo[3.2.1]octan-3-yl)oxy)-4-(4-chlorophenyl)thiazole (7e), 2-((8-methyl-8-azabicyclo[3.2.1]octan-3-yl)thio)-4-phenylthiazole (10a) and 2-((8-methyl-8-azabicyclo [3.2.1]octan-3-yl)thio)-4-(4-chlorophenyl)thiazole (10e) exhibited more than 90% mortality against Bursaphelenchus xylophilus.  相似文献   

14.
The synthesis of 1,2,4-triazole and thiazole analogs of ketoconazole is described in which one of the α azole ring carbons is linked to C-2 of the ketal by means of a three methylene tether. Lithiation of 1-methyl-1,2,4-triazole and thiazole and subsequent alkylation with 2-(2,4-dichlorophenyl)-2-(3-iodopropyl)-1,3-dioxolane produced, after an aqueous acidic workup, 2,4-dichlorophenyl 3-[5-(1-methyl-1,2,4-triazolyl) and 2-thiazolyl]propyl ketones, respectively. Ketalization with glycerol furnished the corresponding diastereomeric pairs of cis and trans 1,3- dioxolanes. The reaction of 2,4-dichlorophenyl 3-[5-(1-methyl-1,2,4-triazolyl)]propyl ketone with 3-mercapto-1,2-propanediol produced the corresponding diastereomeric cis and trans hydroxymethyl 1,3-oxathiolanes. The diastereomeric racemates were separated by column chromatography and their stereochemistry established by nOe nmr experiments. Some of these racemic cis ketal alcohols were converted by benzyl bromide to the corresponding benzyl ethers. Several of these racemic cis-ketals were reacted, first with methanesulfonyl chloride, then with 1-acetyl-4-(4-hydroxyphenyl)piperazine, to furnish the title compounds.  相似文献   

15.
[reaction: see text] The thiazole C-nucleoside analogue was synthesized by the Hantzsch cyclization method to form the thiazole ring and was then converted to the thiazole N-oxide C-nucleoside analogue by peracid oxidation of the heterocycle nitrogen. Incorporation of the thiazole and thiazole N-oxide phosphoramidites into DNA was successful though significant deoxygenation of the N-oxide occurred during DNA assembly. The mechanism proposed for the reduction of the thiazole N-oxide to thiazole involves the formation of an N-oxide phosphite ester.  相似文献   

16.
Tuberculosis (TB), an epidemic disease, affects the world with death rate of two million people every year. The bacterium Mycobacterium tuberculosis was found to be a more potent and disease-prolonged bacterium among the world due to multi-drug resistance. Emergence of new drug targets is needed to overcome the bacterial resistance that leads to control epidemic tuberculosis. The pathway thiamine biosynthesis was targeting M. tuberculosis due to its role in intracellular growth of the bacterium. The screening of enzymes involved in thiamin biosynthesis showed novel target thiazole synthase (ThiG) involved in catalysis of rearrangement of 1-deoxy-d-xylulose 5-phosphate (DXP) to produce the thiazole phosphate moiety of thiamine. We carried out homology modeling for ThiG to understand the structure–function relationship, and the model was refined with MD simulations. The results showed that the model predicted with (α?+?β)8-fold of synthase family proteins. Molecular docking of ThiG model with substrate DXP showed binding mode and key residues ARG46, ASN69, THR41, and LYS96 involved in the catalysis. First-line anti-tuberculosis drugs were docked with ThiG to identify the inhibition. The report showed the anti-tuberculosis drugs interact well with ThiG which may lead to block thiamin biosynthesis pathway.  相似文献   

17.
Derivatives of 1-phenyl-2-methylbenzimidazole, with nitrogen heterocycle groups thiazole, 4-substituted thiazole, benzothiazole, and quinoline, at position 5, are synthesized. The ethiodides of the new bases are used to prepare cyanine dyes: imidadimethinemero-, imidacarbo-, and, imidadicarbocyanines.  相似文献   

18.
Derivatives of 1-phenyl-2-methylbenzimidazole, with nitrogen heterocycle groups thiazole, 4-substituted thiazole, benzothiazole, and quinoline, at position 5, are synthesized. The ethiodides of the new bases are used to prepare cyanine dyes: imidadimethinemero-, imidacarbo-, and, imidadicarbocyanines.For part XXII see [1].  相似文献   

19.
The treatment of 2-(trimethylsilyl)thiazole with trifluoromethylsulfenyl chloride furnishes the expected 2-(trifluoromethylthio)thiazole in satisfactory yields along with the ring contraction product of the azirine-type. However, the reaction of 2-bromothiazol with trifluoromethylthiocopper gives poor yields of the above compound. The mechanism of formation and the mass spectral characterization of the products are presented in this article.  相似文献   

20.
Synthesis of 4H-1,4-benzothiazines containing thiazole ring system is reported by condensation of substituted 2-amino-benzenethiols with N-(substituted benzothiazol-2-yl)-3-oxo-butyr-amides in the presence of DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号