首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
金属有机化学气相沉积(MOCVD)方法制备InGaN/GaN多量子阱结构时,在GaN势垒层生长的N2载气中引入适量H2,能够有效改善阱/垒界面质量从而提升发光效率.本工作利用光致发光(PL)光谱技术,对蓝光激光器结构中的InGaN/GaN多量子阱的发光性能进行了精细的光谱学测量与表征,研究了通H2生长对量子阱界面的调控...  相似文献   

2.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

3.
Hot exciton relaxation is observed in GaAs/Al x Ga1–x As multiple quantum wells. The photolumnescence excitation spectra of the localized exciton emission at low temperatures and excitation densities are composed of narrow equidistant peaks exactly separated by the GaAs LO-phonon energy (36 meV). The relaxation mechanism via LO-phonons is found to be important for localized excitons in multiple quantum wells with GaAs layer thicknesses of about 50 Å, where pronounced alloy fluctuations in the barriers provide a strong additional lateral potential which suppresses the dissociation of hot excitons.  相似文献   

4.
Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about lOOK, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100 K. The reversible carrier tunnelling between the two Q Ws makes it possible to explore new types of temperature sensitive emission devices. It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.  相似文献   

5.
为了制备单芯片无荧光粉白光InGaN/GaN多量子阱发光结构,利用选择性外延生长法在SiO2条纹掩膜板上生长出具有梯形形貌的GaN微面结构,并在该GaN微面结构上生长InGaN/GaN多量子阱结构,最终在单芯片上获得了双波长发光.结果表明:梯形GaN微面由(0001)和(11-22)面组成,两者的表面能和极性不同,并且在InGaN/GaN多量子阱生长过程中,In原子和Ga原子迁移速率不同,从而使得(0001)和(11-22)面上的多量子阱具有不同的发光波长;该性质可以使(11-22)面的微面量子阱发出蓝光(峰值波长为420nm),而(0001)面的量子阱发出黄光(峰值波长为525nm),最终形成双波长的复合白光外延结构.  相似文献   

6.
Photoluminescence (PL), photoluminescence excitation (PLE) and selective excitation (SE-PL) studies were performed in an attempt to identify the origin of the emission bands in a pseudomorphic In0.05Ga0.95N/GaN film. Besides the InGaN near-band-edge PL emission centred at 3.25 eV an additional blue band centred at 2.74 eV was observed. The lower energy PL peak is characterized by an energy separation between absorption and emission–the Stokes’ shift–(500 meV) much larger than expected. A systematic PLE and selective excitation analysis has shown that the PL peak at 2.74 eV is related to an absorption band observed below the InGaN band gap. We propose the blue emission and its related absorption band are associated to defect levels, which can be formed inside either the InGaN or GaN band gap.  相似文献   

7.
熊飞 《物理实验》2004,24(5):46-48
采用光致发光谱、光致发光激发谱以及拉曼光谱对GaN基量子阱材料进行了实验观察和分析 .实验结果表明样品中量子点结构不均匀及InGaN层中In成分分布不均匀 ,且其光致发光谱的波峰是由自由激子辐射复合发光引起的 .同时由室温下InGaN/GaN量子阱的拉曼谱可得知InGaN/GaN多量子阱的结构特征  相似文献   

8.
Blue light emitting diodes (LED) consisting of InGaN/GaN multiple quantum wells (MQWs) have been grown by metal organic chemical vapor deposition (MOCVD) on sapphire. The width of the quantum wells (InGaN) was maintained in the range of 3–5 nm with a barrier of 10–15 nm of GaN. Various diagnostic techniques were employed for the characterization of the InGaN/GaN heterostructure. Carrier concentration depth profile from CV measurements demonstrated the presence of MQWs. The higher value of built-in voltage (15 V) determined from C−2V plot also supported the presence of MQWs as assumed to alter the space-charge region width and hence the intercept voltage. Arrhenius plots due to DLTS spectra from the device revealed at least four energy states (eV) 0.1, 0.12, 0.15 and 0.17, respectively in the quantum wells, with respect to the barrier. Further the photoluminescence spectrum showed an InGaN-based broad band centered at 2.9 eV and the GaN peak at 3.4 eV. A comparison of the PL spectrum with the literature helped to estimate the indium content in the QW (InGaN) and its width to be ∼13% and ∼3 nm, respectively. The results were consistent with the DLTS findings.  相似文献   

9.
Two ultraviolet InGaN/GaN light emitting diodes (LEDs) with and without InGaN underlying layer beneath the multiple quantum wells (MQWs) were grown by metal-organic vapor phase epitaxy. Based on the photoluminescence excitation measurements, it was found that the Stokes shift of the sample with a 10-nm-thick In0.1Ga0.9N underlying layer was about 64 meV, which was smaller than that of the reference sample without InGaN underlying layer, indicating a reduced quantum-confined Stark effect (QCSE) due to the decrease of the piezoelectric polarization field in the MQWs. In addition, by fitting the photon energy dependence of carrier lifetime values, the radiative recombination lifetime of the sample with and without InGaN underlying layer were obtained about 1.22 and 1.58 ns at 10?K, respectively. The shorter carrier lifetime also confirmed that the QCSE in the MQWs was weakened after inserting the InGaN underlying layer. In addition, although the depth of carrier localization in the sample with InGaN underlying layer became smaller, the nonradiative recombination centers (NRCs) inside it decreased, and thus suppressed the nonradiative recombination process significantly according to the electroluminescence measurement results. Compared to the reference sample, the efficiency droop behavior was delayed in the sample with InGaN underlying layer and the droop effect was also effectively alleviated. Therefore, the enhanced light-emission efficiency of ultraviolet InGaN/GaN MQW LEDs could be attributed to the decrease of QCSE and NRCs.  相似文献   

10.
Uniform InGaN nanodots were successfully grown on SiO2 pretreated GaN surface. It was found that the InGaN nanodots were 20?nm in diameter and 5?nm in height, approximately. After the growth of two periods of InGaN/GaN quantum wells on the surface of InGaN nanodots, nanodot structure still formed in the InGaN well layer caused by the enhanced phase separation phenomenon. Dual-color emissions with different behavior were observed from photoluminescence (PL) spectrum of InGaN nanodots hybrid with InGaN/GaN quantum wells. A significant blueshift and a linewidth broadening were measured for the low-energy peak as the increase of PL excitation power, while a slight blueshift and a linewidth narrowing occurred for the high-energy peak. Accordingly, these two peaks were assigned to be from the In-rich nanodots and quantized state transition from the InGaN/GaN quantum wells with indium content, respectively.  相似文献   

11.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

12.
We propose a new method to considerably reduce the overall growth interruption for high-quality GaAs single quantum wells during molecular beam epitaxy. The insertion of ultrathin AlAs smoothing layers at the constituent GaAs/Al x Ga1–x As heterointerfaces and growth interruptions of not more than 15 s yields an improvement of the luminescence linewidth (FWHM) to 0.56 meV for a 13 nm wide GaAs well and to a value as low as 0.195 meV for a 27 nm wide GaAs well. In addition, no Stokes shift between absorption and emission and no line splitting due to monolayer fluctuations in the well width is observed.  相似文献   

13.
不同In含量InGaN/GaN量子阱材料的变温PL谱   总被引:3,自引:3,他引:0       下载免费PDF全文
邢兵  曹文彧  杜为民 《发光学报》2010,31(6):864-869
通过对不同In含量的InGaN/GaN量子阱材料的变温光致发光(PL)谱进行实验分析,得出样品激活能和PL谱峰值能量随温度变化的S形曲线中拐点温度与In含量的关系。说明对于我们的样品,这种S形曲线并不是来源于量子限制Stark效应(QCSE),而是与量子阱中In团簇有关。对比结果表明,含In量越多的材料其局域的能量越大,由热扰动脱离局域所需要的温度越高。  相似文献   

14.
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructures) containing large-scale random-potential fluctuations was studied. The study dealt with the properties of an exciton whose photoexcited electron and hole are spatially divided between the neighboring quantum wells under density variation and at temperatures of down to 0.5 K. We investigated domains ∼1 μm in size, which act as macroscopic exciton traps. Once the resonance laser pump power reaches a certain threshold, a very narrow delocalized exciton line appears (with a width less than 0.3 meV), which grows strongly in intensity with increasing pump power and shifts toward lower energies (by approximately 0.5 meV) in accordance with the exciton buildup in the lowest state in the domain. As the temperature increases, this spectral line disappears in a nonactivated manner. This phenomenon is assigned to Bose condensation occurring in the quasi-two-dimensional system of interwell excitons. The critical exciton density and temperature were determined within the temperature interval studied (0.5 to 3.6 K), and a phase diagram specifying the exciton condensate region was constructed. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 1, 2004, pp. 168–170. Original Russian Text Copyright ? 2004 by Dremin, Larionov, Timofeev.  相似文献   

15.
We have studied the influence of nonlinear elastic effects on the pressure coefficients of light emission, dEE/dP, in cubic InGaN/GaN quantum wells. By means of ab-initio calculations, we have determined the pressure dependences of the elastic constants, C11, C12 and C44 in zinc-blende InN and GaN. Further, we show that the pressure dependence of the elastic constants results in significant reduction of dEE/dP in cubic InGaN/GaN quantum wells and essentially improves the agreement between experimental and theoretical values.  相似文献   

16.
InGaN/GaN single quantum well (SQW) structures under various InGaN growth temperatures have been grown by metal organic chemical vapor deposition (MOCVD), the surface morphologies and optical properties are investigated. The radius of the typical V-pits on the SQW surface is affected by the InGaN well-temperature, and the surface roughness decreased as the well-temperature reduced. Room-temperature photoluminescence (PL) and cathode luminescence (CL) shows the quantum well and quantum dot (QD)-like localized state light emission of the SQWs grown at 700 and 690 °C, respectively, whereas the samples grown at 670 and 650 °C present hybrid emission peaks. Excitation power dependent PL spectra indicates the QD-like localized state emission dominates at low excitation power and the quantum well emission starts to take over at high excitation power.  相似文献   

17.
The influences of InGaN/GaN multiple quantum wells(MQWs) and AlGaN electron-blocking layers(EBL) on the performance of GaN-based violet laser diodes are investigated. Compared with the InGaN/GaN MQWs grown at two different temperatures, the same-temperature growth of InGaN well and GaN barrier layers has a positive effect on the threshold current and slope efficiency of laser diodes, indicating that the quality of MQWs is improved. In addition, the performance of GaN laser diodes could be further improved by increasing Al content in the AlGaN EBL due to the fact that the electron leakage current could be reduced by properly increasing the barrier height of AlGaN EBL. The violet laser diode with a peak output power of 20 W is obtained.  相似文献   

18.
The influences of InGaN/GaN multiple quantum well (MQW) heterostructures with InGaN/GaN and GaN barriers on carrier confinement were investigated. The degree of disordering over a broad range of temperatures from 20 to 300 K was considered. The optical and electrical properties were strongly influenced by structural and compositional disordering of the InGaN/GaN MQW heterostructures. To compare the degree of disordering we examined the temperature dependence of the luminescence spectra and electrical conductance contingent on the Berthelot-type mechanisms in the InGaN/GaN MQW heterostructures. We further considered carrier transport in the InGaN/GaN disordered systems, probability of carrier tunneling, and activation energy of the transport mechanism for devices with InGaN/GaN and GaN barriers. The optical properties of InGaN/GaN disordered heterosystems can be interpreted from the features of the absorption spectra. The anomalous temperature-dependent characteristics of the disordered InGaN/GaN MQW structures were attributable to the enhancement of the exciton confinement.  相似文献   

19.
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n-i-n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring quantum wells were studied as functions of density and temperature within the domains on the scale less than one micron. For this purpose, the surfaces of the samples were coated with a metallic mask containing specially prepared holes (windows) of a micron size an less for the photoexcitation and observation of luminescence. For weak pumping (less than 50 μW), the interwell excitons are strongly localized because of small-scale fluctuations of a random potential, and the corresponding photoluminescence line is inhomogeneously broadened (up to 2.5 meV). As the resonant excitation power increases, the line due to the delocalized excitons arises in a thresholdlike manner, after which its intensity linearly increases with increasing pump power, narrows (the smallest width is 350 μeV), and undergoes a shift (of about 0.5 μeV) to lower energies, in accordance with the filling of the lowest state in the domain. With a rise in temperature, this line disappears from the spectrum (T c ≤ 3.4 K). The observed phenomenon is attributed to Bose-Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature increase almost linearly with temperature.  相似文献   

20.
Photoluminescence (PL) of high quality GaN epitaxial layer grown on β-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an ‘S-like’ shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be ∼27.8±0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed ∼4.5±2×1017 cm−3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号