首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
We consider a single atom within a Fermi sea of atoms. We elucidate by a full many-body analysis the quite mysterious agreement between Monte Carlo results and approximate calculations taking only into account single particle-hole excitations. It results from a nearly perfect destructive interference of the contributions of states with more than one particle-hole pair. This is linked to the remarkable efficiency of the expansion in powers of hole wave vectors, the lowest order leading to perfect interference. Going up to two particle-hole pairs gives an essentially perfect agreement with known exact results. Hence our treatment amounts to an exact solution of this problem.  相似文献   

3.
We present a full many-body analysis of the problem of a single ↓ atom resonantly interacting with a Fermi sea of ↑ atoms. A series of successive approximations permits us to clarify the quite mysterious agreement between Monte Carlo results and approximate calculations taking only into account single particle-hole excitations. We show that it results from a nearly perfect destructive interference of the contributions of states with more than one particle-hole pair. Our treatment provides, at the same time, an essentially exact solution to this problem.  相似文献   

4.
《Physica A》1995,214(2):295-308
The Heisenberg equation for phonon operators in nonlinear lattices is derived establishing the interaction Hamiltonian included higher powers of particle-hole pairs in nonlinear lattices. A phonon operator consists of a particle-hole pair in the harmonic potential approximation in the two band model; it represents an up or down transition of atoms between two levels. Applying the boson transformation method to the Heisenberg equation for phonon operators, we obtain the classical dynamical equation and a linear equation with the self-consistent potential created by the extended objects in nonlinear lattices. The boson transformation leads to soliton solutions in the long wavelength limit. The linear equation can be used to obtain scattering states, bound states and translational modes for phonons.  相似文献   

5.
R S Nikam 《Pramana》1989,32(4):331-339
The Schwinger representation of the SO(8) fermion pair algebra in terms ofd and quasispin vector (u, s, v) bosons is used in deriving a microscopic boson coherent state having both particle-hole and pair excitations. The coherent state is the exact boson image of the HFB variational solution. We can study the shape phase transition and pairing behaviour of the nuclear ground states using the coherent states.  相似文献   

6.
《Nuclear Physics A》1986,458(3):412-428
We investigate four methods for the construction of collective shell model states which may be mapped onto boson states of the IBM-2. These methods use, as building blocks for the wave functions, particle-particle pair operators, particle-hole operators, pair operators with seniority projection and energy-weighted quadrupole operators. It is demonstrated that one obtains stronger collectivity with the energy-weighted quadrupole operator than with the other methods.On the basis of a comparison of calculated and empirical IBM-2 interaction parameters we can rule out the seniority projection method. This implies that particle-particle and particle-hole approaches difler.The ratios between quadrupole matrix elements of the microscopic boson states appear to be similar to the IBM predictions. For states corresponding to those with two d-bosons coupled to J = 0 there is a smaller quadrupole matrix element when subshells with small angular momenta dominate near the Fermi level. Especially for this type of states the collective quadrupole space will be larger than represented in the IBM, however, which may compensate the smaller proton-neutron quadrupole coupling.The calculated bare quadrupole interaction between like bosons is found to be weak.  相似文献   

7.
We present a formalism for calculating the absorption coefficient of a pair of coaxial tubules. A spatially nonlocal, dynamical self-consistent field theory is obtained by calculating the electrostatic potential produced by the charge density fluctuations as well as the external electric field. There are peaks in the absorption spectrum arising from plasma excitations corresponding either to plasmon or particle-hole modes. In this Letter, we numerically calculate the plasmon contribution to the absorption spectrum when an external electric field is applied. The number of peaks depends on the radius of the inner as well as outer tubule. The height of each peak is determined by the plasmon wavelength and energy. For a chosen wave number, the most energetic plasmon has the highest peak corresponding to the largest oscillator strength of the excited modes. Some of the low-frequency plasmon modes have such weak coupling to an external electric field that they are not seen on the same scale as the modes with larger energy of excitation. We plot the peak positions of the plasmon excitations for a pair of coaxial tubules. The coupled modes on the two tubules are split by the Coulomb interaction. The energies of the two highest plasmon branches increase with the radius of the outer tubule. On the contrary, the lowest modes decrease in energy as this radius is increased. No effects due to inter-tubule hopping are included in these calculations.  相似文献   

8.
M. Harvey 《Nuclear Physics A》1973,202(1):191-208
The schematic quartet model of Arima et al. is generalised to include any number of particle-hole excitations. The assumption of constancy of particle-hole matrix elements with mass number is examined in the deformed-oscillator model and shown to be poor in certain cases. A revised picture for particle-hole excitations shows smoother trends than with the schematic model. Comparison with the Zamick model yields greater insight into the structure of two-particle excited states.  相似文献   

9.
We present a theory of single-electron tunneling transport through a ferromagnetic nanoparticle in which particle-hole excitations are coupled to spin collective modes. The model employed to describe the interaction between quasiparticles and collective excitations captures the salient features of a recent microscopic study. Our analysis of nonlinear quantum transport in the regime of weak coupling to the external electrodes is based on a rate-equation formalism for the nonequilibrium occupation probability of the nanoparticle many-body states. For strong electron-boson coupling, we find that the tunneling conductance as a function of bias voltage is characterized by a large and dense set of resonances. Their magnetic field dependence in the large-field regime is linear, with slopes of the same sign. Both features are in agreement with recent tunneling experiments.  相似文献   

10.
Using an exact Bethe ansatz solution, we rigorously study excitation spectra of the spin-1/2 Fermi gas (called Yang–Gaudin model) with an attractive interaction. Elementary excitations of this model involve particle-hole excitation, hole excitation and adding particles in the Fermi seas of pairs and unpaired fermions. The gapped magnon excitations in the spin sector show a ferromagnetic coupling to the Fermi sea of the single fermions. By numerically and analytically solving the Bethe ansatz equations and the thermodynamic Bethe ansatz equations of this model, we obtain excitation energies for various polarizations in the phase of the Fulde–Ferrell–Larkin–Ovchinnikov-like state. For a small momentum (long-wavelength limit) and in the strong interaction regime, we analytically obtained their linear dispersions with curvature corrections, effective masses as well as velocities in particle-hole excitations of pairs and unpaired fermions. Such a type of particle-hole excitations display a novel separation of collective motions of bosonic modes within paired and unpaired fermions. Finally, we also discuss magnon excitations in the spin sector and the application of Bragg spectroscopy for testing such separated charge excitation modes of pairs and single fermions.  相似文献   

11.
A microscopic calculation of reaction cross sections for nucleon-nucleus scattering was performed by coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for (40,48)Ca, 58Ni, 90Zr, and 144Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agreed very well with experimental data and predictions of a fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV.  相似文献   

12.
We study analytically the low energy spectrum of a lattice d-wave superconductor in the vortex lattice state. For an inversion symmetric hc/2e vortex lattice and in the presence of particle-hole symmetry we prove an index theorem that imposes a lower bound on the number of zero-energy modes. Generic cases are constructed in which this bound exceeds the number of zero modes of an equivalent lattice of hc/e vortices, despite the identical point group symmetries. The quasiparticle spectrum around the zero modes is doubly degenerate and exhibits a Dirac-like dispersion, with velocities that become universal functions of Delta(0)/t in the limit of low magnetic field. For weak particle-hole symmetry breaking, the gapped state can be characterized by a topological quantum number, related to spin-Hall conductivity, which generally differs in the cases of the hc/2e and hc/e vortex lattices.  相似文献   

13.
14.
A new approach, motivated by Fock space localization, for constructing a reduced many-particle Hilbert space is proposed and tested. The self-consistent Hartree-Fock approach is used to obtain a single-electron basis from which the many-particle Hilbert space is constructed. For a given size of the truncated many particle Hilbert space, only states with the lowest number of particle-hole excitations are retained and exactly diagonalized. This method is shown to be more accurate than previous truncation methods, while there is no additional computational complexity.  相似文献   

15.
We study the localization length lc of a pair of two attractively bound particles moving in a one-dimensional random potential. We show in which way it depends on the interaction potential between the constituents of this composite particle. For a pair with many bound states N the localization length is proportional to N, independently of the form of the two particle interaction. For the case of two bound states, we present an exact solution for the corresponding Fokker–Planck equation and demonstrate that lc depends sensitively on the shape of the interaction potential and the symmetry of the bound state wave functions.  相似文献   

16.
We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regimes of trap frequencies where rotons occur, we observe strong damping of collective excitations by decay into two rotons.  相似文献   

17.
We discuss a multistep variational approach to collective excitations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.  相似文献   

18.
We discuss a multistep variational approach to collective excitations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. The purpose of these diagonalizations is that of searchingf or the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle-one-hole and up to two-particle-two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.  相似文献   

19.
两个双能级原子与双模腔场的拉曼相互作用   总被引:4,自引:0,他引:4  
冯健  宋同强  王文正  许敬之 《光学学报》1994,14(12):1272-1276
研究了两个双能级原子与双模辐射腔场的拉曼相互作用,计算了两个原子与腔场具有相同耦合常数但同时考虑原子间偶极一偶极相互作用情形下的辐射谱.讨论了双模腔场处于不同数态时辐射谱的新特点.  相似文献   

20.
The influence of the structure of a nucleus on the nuclear (3,3) resonance is discussed in the framework of a special kind of a particle hole model where the elementary excitation mode is assumed to be the transition of a bound nucleon into a (bound) Δ. The residual interaction between a nucleon and a Δ leads to a mixing of different particle-hole excitations and hence, collective effects are expected to show up, resulting for example in a shift of the main peak of the excitation spectrum; furthermore — due to quenching — a fine structure in the spectrum could be visible, — Recent experimental data on the 4He(γ,pπ?) reaction can possibly be interpreted in the present model with an attractive NΔ residual interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号