共查询到20条相似文献,搜索用时 109 毫秒
1.
提出了一种基于耦合介质纳米线的深亚波长局域波导,通过两根紧邻的高折射率介质纳米线的耦合,该波导可以将光场有效束缚在纳米线之间的低折射率纳米缝隙中. 计算模拟的结果表明,该波导的有效模场面积达到Λ20/200,比单根纳米线波导小一个数量级,这种深亚波长的模场束缚能力可以与表面等离激元混合波导相比拟. 计算模拟的结果还表明,纳米线可能带有的低折射率氧化膜、低折射率衬底的存在、以及纳米线间尺寸存在的一定差异对于该波导结构的实际应用都不会产生很大
关键词:
介质波导
亚波长局域
表面等离激元波导
纳米线 相似文献
2.
采用边界元方法研究了快电子在金属纳米双线中激发间隙表面等离激元(SPP)的性质,比较了在不同横截面形状(包括圆形、尖劈形和不规则形状)下电子所激发SPP的不同.研究表明:在以上波导结构中,快电子都能激发具有较长传播距离和较好局域性的低阶单级-单级耦合的间隙等离激元模式;同时通过对波导无量纲价值参数的比较,发现快电子在纳米双线中激发间隙等离激元对双线波导的横截面形状要求不高,横截面形状真正影响的是高阶等离激元模式的激发,而且快电子在截面形状为尖劈的双线波导中能激发局域性更强的间隙SPP.该研究将对实验中利用
关键词:
表面等离激元
间隙模式
金属纳米波导 相似文献
3.
纳米集成光子学的核心关键技术之一在于新型高效纳米光耦合器、纳米光波导等纳米光子器件的设计与制备.表面等离子体激元(SPPs)是由外部电磁场与金属表面自由电子相互作用形成的一种相干共振,除具有巨大的局部场增强效应外,还具有将激发电磁场能量限制在纳米尺度范围的特点.基于SPPs的各种纳米光子器件被誉为当今最有希望的纳米全光集成回路的基础,成为目前国际上的一个研究热点.文章对基于SPPs的纳米集成光子器件的最新研究进展和研究成果进行评述. 相似文献
4.
表面等离子体激元纳米集成光子器件 总被引:4,自引:0,他引:4
纳米集成光子学的核心关键技术之一在于新型高效纳米光耦合器、纳米光波导等纳米光子器件的设计与制备.表面等离子体激元(SPPs)是由外部电磁场与金属表面自由电子相互作用形成的一种相干共振,除具有巨大的局部场增强效应外,还具有将激发电磁场能量限制在纳米尺度范围的特点.基于SPPs的各种纳米光子器件被誉为当今最有希望的纳米全光集成回路的基础,成为目前国际上的一个研究热点.文章对基于SPPs的纳米集成光子器件的最新研究进展和研究成果进行评述。 相似文献
5.
An actively enhanced resonant transmission in a plasmonic array of subwavelength holes is demonstrated by use of terahertz time-domain spectroscopy. By connecting this two-dimensional element into an electrical circuit, tunable resonance enhancement is observed in arrays made from good and relatively poor metals. The tunable feature is attributed to the nonlinear electric response of the periodic hole array film, which is confirmed by its voltage–current behavior. This finding could lead to a unique route to active plasmonic devices, such as tunable filters, spatial modulators, and integrated terahertz optoelectronic components. 相似文献
6.
The extraordinary light transmission through a 200-nm thick gold
film when passing through different subwavelength hole arrays is
observed experimentally. The sample is fabricated by electron beam
lithography and reactive ion etching system. A comparison between
light transmissions shows that the hole shape changing from
rectangular to diamond strongly affects the transmission intensity
although both structures possess the same lattice constant of
600,nm. Moreover, the position of the transmission maximum
undergoes a spectral red-shift of about 63,nm. Numerical
simulations by using a transfer matrix method reproduce the observed
transmission spectrum quite well. 相似文献
7.
Xiao Xiong Chang‐Ling Zou Xi‐Feng Ren Ai‐Ping Liu Yan‐Xia Ye Fang‐Wen Sun Guang‐Can Guo 《Laser \u0026amp; Photonics Reviews》2013,7(6):901-919
Although silver nanowires as plasmonic components have been investigated extensively in both theoretical and experimental studies, a systematic study is still lacking. In this work, a review is given to explain some basic features of experimentally prepared nanowires and their optical properties in different situations, such as waveguides, resonators, and antennas. The review also lists several possible applications of nanowires for enhanced light‐emitting, photonic device fabrication, sensors, lasers, and nonlinear optics. Combined with the merits of both nanowires and surface plasmon polaritons, silver nanowires are certain to show their potential in photonics in the near future. 相似文献
8.
A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index 下载免费PDF全文
In this paper, a subwavelength metal-grating assisted sensor of Kretschmann style that is capable of detecting the sample with a refractive index higher than that of the substrate is proposed. The sensor configuration is similar to the traditional Kretschmann structure, but the metal film is pattered into a grating. As a TM-polarized laser beam impinges from the substrate, a resonant dip point in reflectance curve is produced at a certain incident angle. Our studies indicate that the sensing sensitivity and resolution are affected by the grating's gap and period, and after these parameters have been optimized, a sensing sensitivity of 51.484°/RIU is obtained with a slightly changing resolution. 相似文献
9.
A tunable plasmonic waveguide via gold nanoshells immerged in a silica base is proposed and simulated by using the finite difference time-domain (FDTD) method. For waveguides based on near-field coupling, transmission frequencies can be tuned in a wide region from 660 to 900 nm in wavelength by varying shell thicknesses. After exploring the steady distributions of electric fields in these waveguides, we find that their decay lengths are about 5.948-12.83 dB/1000 nm, which is superior to the decay length (8.947 dB/1000 nm) of a gold nanosphere plasmonic waveguide. These excellent tunability and transmittability are mainly due to the unique hollow structure. These gold nanoshell waveguides should be fabricated in laboratory. 相似文献
10.
Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene 下载免费PDF全文
A kind of nested eccentric waveguide constructed with two cylindrical nanowires coated with graphene was designed. The mode characteristics of this waveguide were studied using the multipole method. It was found that the three lowest modes (mode 0, mode 1 and mode 2) can be combined by the zero-order mode or/and the first-order modes of two single nanowires. Mode 0 has a higher figure of merit and the best performance among these modes within the parameter range of interest. The mode characteristics can be adjusted by changing the parameters of the waveguide. For example, the propagation length will be increased when the operating wavelength, the minimum spacing between the inner and outer cylinders, the inner cylinder radius and the Fermi energy are increased. However, when the outer cylinder radius, the dielectric constants of region I, or the dielectric constants of region III are increased, the opposite effect can be seen. These results are consistent with the results obtained using the finite element method (FEM). The waveguide structure designed in this paper is easy to fabricate and can be applied to the field of micro/nano sensing. 相似文献
11.
Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire 下载免费PDF全文
Using propagating surface plasmons(SPs) on a silver nanowire(NW), we demonstrate that a focused laser light at the end of the silver NW can excite a single quantum dot(QD) microns away from the excitation spot. The QD–NW interaction allows the excited QD convert part of its energy into propagating SPs, which then can be detected at remote sites.Simultaneous multi-QD remote excitation and remote detection can also be realized. Furthermore, the tight confinement of the propagating SPs around the NW surface enables the selective excitation of QDs very close in space, which cannot be realized under the conventional excitation condition. This remote excitation and remote detection approach may find applications in optical imaging and the sensing of chemical and biological systems. 相似文献
12.
13.
14.
15.
A new model is proposed to explain the physical mechanism of the extraordinary transmission enhancement in subwavelength metallic grating. The extraordinary transmission enhancement is described by the co-operation of Fabry-Perot-like (FPL) resonance and the surface plasmon polariton (SPP) resonance. The rigorous coupled-wave analysis (RCWA) and the finite difference time domain (FDTD) method are employed to illustrate the model by calculating the transmission and the field distributions in the subwavelength metallic grating, respectively. And the numerical calculations show that transmission enhancement is achieved when the coupling resonance of the incident light, the surface plasmon polariton mode and the Fabry-Perot-Like mode is happened, which are in good agreement with the proposed model. 相似文献
16.
I.P. Radko V.S. Volkov J. Beermann A.B. Evlyukhin T. Sndergaard A. Boltasseva S.I. Bozhevolnyi 《Laser \u0026amp; Photonics Reviews》2009,3(6):575-590
The explosive progress in nanoscience has led to uncovering and exploring numerous physical phenomena occurring at nanoscale, especially when metal nanostructures are involved so that optical fields and electronic oscillations can be resonantly coupled. The latter is the subject of (nano) plasmonics with implications extending from subwavelength waveguiding to localized field enhancements. In this review paper, we consider making use of various phenomena related to multiple scattering of surface plasmons (SPs) at periodically and randomly (nano) structured metal surfaces. After reviewing the SP waveguiding along channels in nanostructured areas exhibiting band‐gap and localization effects, SP‐driven field enhancement in random structures and plasmonic fractal drums is discussed in detail. SP manipulation and waveguiding using periodic nanostructures on the long‐wavelength side of the band gap is also considered. 相似文献
17.
Jicheng Wang Yueke Wang Xueru Zhang Kun Yang Yuxiao Wang Shutian Liu Yinglin Song 《Optik》2011,122(20):1808-1810
A transmission line model for subwavelength metallic grating with single cut is presented. The model is based on analogy between the subwavelength metallic structure and the microwave transmission line theory. The analytical expression for the transmission is derived by the transfer matrix method. To confirm our model, the finite-difference time-domain (FDTD) method simulations are carried out. The influences of the position of the cuts on the higher modes of slit are presented. It is found that the transmission line model gives analytical prediction about the evolution of the transmission spectra. 相似文献
18.
19.
20.
理论分析了声子和电子输运对Cu, Ag金属纳米线热导率的贡献. 采用镶嵌原子作用势模型描述纳米尺寸下金属原子间的相互作用, 应用平衡分子动力学方法和Green-Kubo函数模拟了金属纳米线的声子热导率; 采用玻尔兹曼输运理论和Wiedemann-Franz定律计算电子热导率; 并通过散射失配模型和Mayadas-Shatzkes模型引入晶界散射的影响. 在此基础上, 考察分析了纳米线尺度和温度的影响. 研究结果表明: Cu, Ag纳米线热导率的变化规律相似; 电子输运对金属纳米线的导热占主导地位, 而声子热导率的贡献也不容忽视; 晶界散射导致热导率减小, 尤其对电子热导率作用显著; 纳米线总热导率随着温度的升高而降低; 随着截面尺寸减小而减小, 但声子热导率所占份额有所增加.
关键词:
纳米线
热导率
表面散射
晶界散射 相似文献