首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The large electron mobility at room temperature and the absence of Schottky barrier to metals make InAs two-dimensional electron gas (2DEG) a good candidate for SPIN-FET (FET—field-effect-transistor) applications. So far the growth was done either on the InAlAs epilayers compositionally matched to InP substrates, or on Sb-based compound semiconductors. Here we aim to grow InAs 2DEG on GaAs substrates by using a strain-relaxing buffer layer. We introduce In0.4Al0.6As glue layer to the metamorphic structure and investigate the physical properties of InAlAs/InGaAs multi-quantum-well (MQW) structures via X-ray diffraction, transmission electron microscopy, and photoluminescence. We find that the use of As dimer instead of tetramer and the choice of proper growth temperature are essential for successful growth. InAs-inserted-channel InAlAs/InGaAs inverted high-electron-mobility transistor (HEMT) structures show promising results for SPIN-FET application.  相似文献   

2.
Low-temperature step-graded high indium content InAlAs (In% = 0.75) metamorphic buffer layers with reverse step layer grown on GaAs substrate by molecular beam epitaxy are investigated in this paper. The composition and the strain relaxation of the top InAlAs layer are determined by high-resolution triple-axis X-ray diffraction measurements, which show that the top InAlAs layer is nearly fully relaxed and the growth parameters for these samples have little influence on the strain relaxation ratio. Surface morphology is observed by reflection high-energy electron diffraction pattern and atomic force microscopy. The surface morphology is found to depend strongly on both the growth temperature and the As flux. Compared with other samples, the sample growth under the optimized conditions has the smallest value of root mean square surface roughness. Furthermore, the ω − 2θ and ω scans of the triple-axis X-ray diffraction and transmission electron microscopy result also show the sample grown under the optimized conditions has good crystalline quality.  相似文献   

3.
赝配InGaAs/InAlAs调制掺杂异质结构可以获得很高的电子气面密度和电子迁移率,从而可以制成具有优越高频和低噪声特性的高电子迁移率晶体管(HEMT).文中报道InGaAs/InAlAs调制掺杂异质结构低温下纵向和横向磁阻随磁场强度变化的Shubnikov-de Haas(SdH)振荡和量子Hall效应.对SdH振荡曲线作了快速傅里叶变换,获得了二维电子气的能带结构和各能带上的电子气面密度.分析比较了顶层InGaAs不同掺杂情况对SdH振荡的影响,结果发现顶层InGaAs重掺杂,会对表面态起屏蔽作用, 关键词:  相似文献   

4.
利用固源分子束外延设备生长出InAs/InAlAs/InP(001)纳米结构材料, 探讨了As压调制的InAlAs超晶格对InAs纳米结构形貌的影响. 结果表明, As压调制的InAlAs超晶格能控制InAs量子线的形成, 导致高密度均匀分布的量子点的生长. 结果有利于进一步理解量子点形貌控制机理. 分析认为, InAs纳米结构的形貌主要由InAlAs层的各向异性应变分布和In吸附原子的各向异性扩散所决定.  相似文献   

5.
李东临  曾一平 《中国物理》2006,15(11):2735-2741
We have carried out a theoretical study of double-5-doped InAlAs/InGaAs/InP high electron mobility transistor (HEMT) by means of the finite differential method. The electronic states in the quantum well of the HEMT are calculated self-consistently. Instead of boundary conditions, initial conditions are used to solve the Poisson equation. The concentration of two-dimensional electron gas (2DEG) and its distribution in the HEMT have been obtained. By changing the doping density of upper and lower impurity layers we find that the 2DEG concentration confined in the channel is greatly affected by these two doping layers. But the electrons depleted by the Schottky contact are hardly affected by the lower impurity layer. It is only related to the doping density of upper impurity layer. This means that we can deal with the doping concentrations of the two impurity layers and optimize them separately. Considering the sheet concentration and the mobility of the electrons in the channel, the optimized doping densities are found to be 5 × 10^12 and 3× 10^12 cm^-2 for the upper and lower impurity layers, respectively, in the double-5-doped InAlAs/InGaAs/InP HEMTs.  相似文献   

6.
用Shubnikov-de Haas(SdH)振荡效应,研究了在1.4 K下不同量子阱宽度(10—35 nm)的InP基高电子迁移率晶体管材料的二维电子气特性.通过对纵向电阻SdH振荡的快速傅里叶变换分析,得到不同阱宽时量子阱中二维电子气各子带电子浓度和量子迁移率.研究发现,在Si掺杂浓度一定时,阱宽的改变对于量子阱中总的载流子浓度改变不大,但是随着阱宽的增加,阱中的电子从占据一个子带到占据两个子带,且第二子带上的载流子迁移率远大于第一子带迁移率.当量子阱宽度为20 nm时,处在第二子能级上的电子数与处在 关键词: 量子阱宽 二维电子气 Shubnikov-de Haas振荡 高电子迁移率晶体管  相似文献   

7.
徐静波  张海英  付晓君  郭天义  黄杰 《中国物理 B》2010,19(3):37302-037302
This paper applies a novel quad-layer resist and e-beam lithography technique to fabricate a GaAs-based InAlAs/InGaAs metamorphic high electron mobility transistor (HEMT) grown by metal organic chemical vapour deposition (MOCVD). The gate length of the metamorphic HEMT was 150~nm, the maximum current density was 330~mA/mm, the maximum transconductance was 470~mS/mm, the threshold voltage was -0.6~V, and the maximum current gain cut-off frequency and maximum oscillation frequency were 102~GHz and 450~GHz, respectively. This is the first report on tri-termination devices whose frequency value is above 400~GHz in China. The excellent frequency performances promise the possibility of metamorphic HEMTs grown by MOCVD for millimetre-wave applications, and more outstanding device performances would be obtained after optimizing the material structure, the elaborate T-gate and other device processes further.  相似文献   

8.
武利翻  张玉明  吕红亮  张义门 《中国物理 B》2016,25(10):108101-108101
Al_2O_3 and HfO_2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition(ALD).The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy(AR-XPS).It is demonstrated that the Al_2O_3 layer can reduce interfacial oxidation and trap charge formation.The gate leakage current densities are 1.37×10~6 A/cm~2 and 3.22×10~6 A/cm~2 at+1V for the Al_2O_3/InAlAs and HfO_2/InAlAs MOS capacitors respectively.Compared with the HfO_2/InAlAs metal-oxide-semiconductor(MOS) capacitor,the Al_2O_3/InAlAS MOS capacitor exhibits good electrical properties in reducing gate leakage current,narrowing down the hysteresis loop,shrinking stretch-out of the C-V characteristics,and significantly reducing the oxide trapped charge(Q_(ot)) value and the interface state density(D_(it)).  相似文献   

9.
The alternating change of electron mobility values in the modulation doped InAlAs/InGaAs/InAlAs quantum well (QW) dependently on a thickness of the InAs layer inserted in the center of the QW is theoretically predicted and experimentally observed. The electron mobility enhancement by a factor of 1.5–2 takes place when the 4 nm-thick InAs layer is inserted into the 17 nm-width QW. The experimental maximal value of the electron drift velocity at the threshold electric field for intervalley electron scattering achieves (1.8?2)×107 cm/s and does not nearly depend on the thickness of the InAs insert. The high value of maximal drift velocity is conserved at the additional doping of the InAs insert up to electron density of 4×1012 cm?2 in the QW.  相似文献   

10.
Solov’ev  V. A.  Chernov  M. Yu.  Komkov  O. S.  Firsov  D. D.  Sitnikova  A. A.  Ivanov  S. V. 《JETP Letters》2019,109(6):377-381
JETP Letters - Metamorphic InAs(Sb)/InGaAs/InAlAs quantum-confined heterostructures with thin (1–5 nm) strongly mismatched GaAs and InAs inserts in a gradient metamorphic InxAl1−xAs...  相似文献   

11.
Abstract

The results of electrical transport measurements (Hall effect and resistivity) performed on In.65Ga.35As-In Al.48 As modulation doped heterostructure (with Si-doped InAlAs donor layer) and on In .52Al .48As thick layer are presented as a function of temperature (77–300K range) and hydrostatic pressure (up to 1300 MPa). At low temperature, the persistent photoconductivity (PPC) and metastable donor states occupation effects were observed. Due to the pressure induced decrease of the two-dimensional electron gas concentration the pronounced increase in the amplitude of observed effects was obtained. The above results are discussed in terms of DX-like centers and/or interface/surface states in the QW structure.  相似文献   

12.
We report on the fabrication of high performance InP-based devices on an exact (001)Si-substrate. On an InP-on-Si quasi-substrate, the growth of superlattices and low-temperature InAlAs buffer for surface and device layer improvement is investigated. The selected device examples are an InGaAsP PIN diode and an (In)AlAs/In(Ga)As resonant tunnelling diodes. The functionality of these examples relies sensitively on sharp interfaces of ultra thin layers and a high optical quality of epitaxially grown III/V layers silicon substrates. A qualitative improvement is obtained for a low-temperature InAlAs buffer layer grown prior to the of device layers. Based on device models extracted from the fabricated devices a potentially low-cost optical receiver circuit on a Si-substrate is proposed and simulated using HSPICE up to 10 Gbit/s. PACS 73.40.Kp; 73.43.Jn; 73.61.Ey; 78.70.Ck; 78.70.Gq  相似文献   

13.
具有InAlAs浸润层的InGaAs量子点的制备和特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用自组装方法生长了一种新型的InGaAs量子点/InAlAs浸润层结构.通过选取合适的In组分 ,使InAlAs浸润层的能级与GaAs势垒相当,从而使浸润层的量子阱特征消失.通过低温光致 发光(PL)谱的测试分析得到InGaAs量子点/InAlAs浸润层在样品中的确切位置.变温PL谱的 研究显示,具有这种结构的量子点发光峰的半高全宽随温度上升出现展宽,这明显区别于普 通InGaAs量子点半高全宽变窄的行为.这是因为采用了InAlAs浸润层后,不仅增强了对InGaA s量子点的限制作用,同时切断了载流子的 关键词: InGaAs量子点 InAlAs浸润层 PL谱  相似文献   

14.
Mg-doped InAlAs and InGaAs films were grown at 560 °C lattice matched to InP semi-insulting substrate by metalorganic vapor phase epitaxy (MOVPE) under various Cp2Mg flow conditions. Hall effect, photoluminescence (PL), high-resolution X-ray diffraction (HR-XRD), and secondary ion mass (SIMS) were the tools used in this work. The crystalline quality and the n-p conversion of the InAlAs and InGaAs/Mg films are described and discussed in relation to the Cp2Mg flow. Distinguishing triple emission peaks in PL spectra is observed and seems to be strongly dependent on the Cp2Mg flow. SIMS is employed to analyze the elements in the epitaxial layers. The variation of indium and magnesium components indicates a decrease of magnesium incorporation during the growth of InAlAs layers leading to a contracted lattice. In addition, the magnesium incorporation in the InGaAs lattice during growth has been confirmed by SIMS.  相似文献   

15.
We observe an unusual behavior of the low-temperature magnetoresistance of the high-mobility two-dimensional electron gas in InGaAs/InAlAs quantum wells in weak perpendicular magnetic fields. The observed magnetoresistance is qualitatively similar to that expected for the weak localization and antilocalization but its quantity exceeds significantly the scale of the quantum corrections. The calculations show that the obtained data can be explained by the classical effects in electron motion along the open orbits in a quasiperiodic potential relief manifested by the presence of ridges on the quantum well surface.  相似文献   

16.
采用阶变缓冲层技术 (step-graded) 外延生长了具有更优带隙组合的倒装GaInP/GaAs/In0.3Ga0.7As(1.0 eV) 三结太阳电池材料, TEM和HRXRD测试表明晶格失配度为2%的In0.3Ga0.7As 底电池具有较低的穿透位错密度和较高的晶体质量, 达到太阳电池的制备要求. 通过键合、剥离等工艺制备了太阳电池芯片. 面积为 10.922 cm2 的太阳电池芯片在空间光谱条件下转换效率达到32.64% (AM0, 25 ℃), 比传统晶格匹配的 GaInP/GaAs/Ge(0.67 eV) 三结太阳电池的转换效率提高3个百分点. 关键词: 太阳电池 三结 倒装结构  相似文献   

17.
We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.  相似文献   

18.
In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.  相似文献   

19.
We report an InGaAs/InAlAs multiple-quantum-well (MQW) emitter bipolar transistor prepared by molecular beam epitaxy. There are three distinct operating regimes to be observed in the studied structure. At small input base currents, low field band-type conduction provides the output current. The device exhibits a small gain and works as a normal transistor. With further increase in the base current, the high field starts appearing in the MQW superlattice. We observe that both the output current and transconductance exhibit an oscillatory behaviour in terms of sequential resonant-tunnelling through an expanding high field MQW domain. Beyond the condition of expansion of high field domain, the electron current increases rapidly by tunnelling through the triangular barrier and emitting over the base layer. The MQW superlattice now works as a barrier to hole minority carriers within this region. We obtain a common-emitter current gain as high as 240 with a small offset voltage of about 80 mV.  相似文献   

20.
采用低压金属有机化学气相沉积(LP-MOCVD)技术,两步生长法在InP衬底上制备In0.82Ga0.18As材料。研究缓冲层的生长温度对In0.82Ga0.18As薄膜的结构及电学性能的影响。固定外延薄膜的生长条件,仅改变缓冲层生长温度(分别为410,430,450,470 ℃),且维持缓冲层其他生长条件不变。用拉曼散射研究样品的结构性能,测量四个样品的拉曼散射光谱,得到样品的GaAs的纵向光学(LO)声子散射峰的非对称比分别为1.53,1.52,1.39和1.76。测量样品的霍耳效应表明,载流子浓度随缓冲层生长温度变化而改变,同时迁移率也随缓冲层生长温度变化而改变。通过实验得出:缓冲层的生长温度能够影响In0.82Ga0.18As薄膜的结构及电学性能。最佳的缓冲层生长温度为450 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号