首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The chromophore dibromo-o-nitrophenylfluorone (DBNPF) was used to complex Fe(III) and Cu(II) at pH 5.88. Fe(III) can competitively replace Cu(II) from its dinuclear complex Cu(DBNPF)Cu, and forms the Cu(DBNPF)Fe heterodinuclear complex. The Fe-DBNPF and Cu-DBNPF complexes were also characterized by the spectral correction technique. The heterodinuclear replacement complexation (HRC) is proposed and first used for the quantitative detection of iron in trace level with high sensitivity and good selectivity by the light-absorption ratio variation approach. The limit of detection of Fe is 1.0 μg L−1. The method has been successfully applied to the direct determination of Fe(II, III) dissolved and bound to suspended substances in natural water.  相似文献   

2.
外源Cu2+与烟草CuZnSODⅢ的相互作用   总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper, we have studied the interaction of CuZnSODⅢ and Outer-Copper, enzyme activity experiments expressed that 0.1mmol·L-1 Cu2+ addition reduced the enzyme activity sharply, but this reduced action had not been found for the additions of 0.1mmol·L-1 1∶1 Cu2+ and Zn2+, and 0.1mmol·L-1 Zn2+, respectively. This was due to the Cu2+ exchanged the Zn2+ in CuZnSODⅢ,and it was proved by the experiment of determination of metal content. Meanwhile, the static fluorescence quenching mechanism revealed the exist of molecular complex of CuZnSOD with Cu2+. The binding constant was obtained from lineweaver-burk and double-lg plot. The distance of active site to Trp is about 2.83nm, was calculated according to F?rster theory.  相似文献   

3.
 The use of niobium (V) oxide, chemically adsorbed on silica gel surface (Nb2O5–SiO2), as an adsorbent in a pre-concentration system for copper (II) and cadmium (II) determination was proposed. The procedure is based on the large ion-exchange capacity for the adsorption of copper (II) and cadmium (II) ions on the mini-column packed with Nb2O5–SiO2, followed by elution with 2.0 mol L−1 nitric acid and determination by flame atomic absorption spectrometry. Chemical and flow variables were optimized. The results demonstrated that the sample solutions containing copper (II) or cadmium (II) in a concentration range of 3.0 to 600.0 μg L−1 and 3.1 to 100.0 μg L−1 respectively, in a solution of pH 5.0 could be determined using a pre-concentration time of 2 min. The enrichment factor when using a sample volume of 10.2 mL and 2 min of pre-concentration was 17.5 and 20.3 for copper (II) and cadmium (II), respectively. The limit of detection for copper (II) and cadmium (II) was 0.5 μg L−1 and 1.0 μg L−1, respectively. The relative standard deviation (RSD) was lower than 1.4% for copper (II) and cadmium (II) when using a concentration of 25.0 μg L−1 for both metals. The method was tolerant to other ions usually present in water samples. Good accuracy was obtained by the analysis of water reference material and environment samples. Correspondence: Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis SC, Brazil. e-mail: carasek@qmc.ufsc.br Received July 16, 2002; accepted October 25, 2002  相似文献   

4.
A coprecipitation method using a combination of 2-mercaptobenzothiazole (MBT) as a chelating reagent and copper as the coprecipitate carrier is described for the determination of trace lead and cadmium by flame atomic absorption spectrometry. The coprecipitation conditions, such as the effect of pH, the amount of carrier element and reagent, standing time, sample volume and matrix effects were examined in detail. It was found that lead and cadmium are coprecipitated quantitatively (≥95%) with Cu(II)-MBT at pH 9 and that the relative standard deviations (n = 7) were ≤1.6%. When using the enrichment factors of 150-fold for lead and cadmium, the detection limits (3s/b) obtained are 1.08 for lead and 0.04 μg L−1 for cadmium. The method was validated with spiked sea water, stream water, well water, and vegetable samples.  相似文献   

5.
A sensitive fluorometric method for the determination of ctDNA (calf thymus DNA) is presented. It has good selectivity and sensitivity and uses nano-SiO2 particles as an effective dispersant and stabilizer for acridine orange (AO). Compared to resonance light scattering (RLS) and the conventional method that uses organic dyes as fluorescence probe, the new method is more tolerant towards coexisting foreign substances and also more stable. With 20 mg nano-SiO2 particles, 10 μmol L−1 AO, at pH 8.01 and an ionic strength of 0.02 mol L−1, the interaction of AO with nano-SiO2 and ctDNA results in fluorescent signal enhancement. The extent of enhancement was in good proportion to the concentration of ctDNA at excitation/emission wavelengths of 490/523 nm, respectively. The calibration curve was linear over 0.66–55.60 μg mL−1. The determination limit (3σ) was 15 μg mL−1. The method was applied to the determination of ctDNA in synthetic samples with satisfactory results.  相似文献   

6.
We describe the solid-phase extraction for the preconcentration and determination of Cd(II) and Cu(II) aqueous samples by inductively coupled plasma optical emission spectrometry. The preconcentration of analytes is accomplished by retention of their chelates with 1,10-phenanthroline in aqueous solution on a solid phase containing cyanopropylsilane bonded to silica gel in a column. The preconcentration factor is 80 for the cadmium ions and 120 for the copper ions with relative standard deviations of between 0.5 and 1.5%. The limits of detection (defined as “3 s” where “s” is the standard deviation of the blank determination) are 0.18 and 0.073 μg L−1 for Cd(II) and Cu(II), respectively, and the corresponding limits of quantification (6 s) are 0.36 and 0.15 μg L−1, respectively. As a result, a simple method was created for simultaneous preconcentration and determination of the metals in reference material and in plant sample material. Correspondence: Bożena Puzio, Institute of Chemistry, Silesian University, 40-006 Katowice, Poland  相似文献   

7.
The H-point standard addition method (HPSAM) was applied to handling spectrophotometric data for simultaneous determination of Zn2+ and Cu2+ or selective determination of Zn2+ in the presence of Cu2+. The ligand 1-(2-pyridylazo)2-naphthol (PAN) and its metal complexes (Zn-PAN and Cu(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. The method is based on the difference in absorbance of formed complexes between Zn2+ and PAN, at two different wavelengths at pH = 9.2. The formation of both the complexes was complete within five minutes. Zn2+ can be determined in the range of 0.2–25 μg/mL with satisfactory accuracy and precision in the presence of excess of Cu2+ and most other metal ions. Interference effects of common anions and cations were studied. Under working conditions, the proposed method was successfully applied to the simultaneous determination of Zn2+ and Cu2+ in several real and synthetic mixtures with different concentration ratio of Zn2+ and Cu2+. The text was submitted by the authors in English.  相似文献   

8.
A new method based on ultrasonic slurry sampling atomic absorption spectrometry (AAS) was established for the determination of trace mercury in geological samples by use of recently developed mercury cold vapor generation using formic acid under ultraviolet (UV) irradiation. The generated mercury cold vapor was rapidly separated from the matrix and swept into a T-tube for the measurement of atomic absorbance. Under the optimal experimental conditions, up to 1000-fold of Cu(II), Co(II), Ni(II), Cr(VI), Mn(II), Fe(III), and Zn(II) caused no significant interference with the determination of 50 μg L−1 Hg. The limit of detection at sub-ppb level was obtained for mercury. The method was applied to the determination of mercury in geological samples with satisfactory results. Correspondence: Xiandeng Hou, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China  相似文献   

9.
This paper describes the development of a cloud point extraction procedure for the determination of manganese in saline effluents by flame atomic absorption spectrometry (FAAS). The optimization step was performed using the Doehlert matrix involving the following variables: buffer concentration, pH and centrifugation time. The validation process was assessed as: parameters of the analytical curve, precision, effect of other ions in the proposed procedure, robustness test and accuracy. The proposed procedure allows the determination of manganese with a detection limit (3δ/S) of 0.60 μg L−1, and a precision expressed as relative standard deviation (RSD) of 2.2 (n = 8) and 1.5% (n = 8) for a manganese concentration of 1 and 5 μg L−1, respectively. The pre-concentration factor obtained was 84. The recovery achieved for the determination of manganese in the presence of several other metal ions demonstrated that this procedure could be satisfactorily applied to the analysis of environmental samples. The accuracy was confirmed by the analysis of CRM trace elements in water (NIST 1643d). This procedure was applied to the determination of manganese in saline effluents of a petroleum refinery. For three analyzed samples the manganese content varied between 44.9 and 67.9 μg L−1.  相似文献   

10.
A new column, solid-phase extraction (SPE), preconcentration method was developed for determination of Cd, Co, and Cu ions in natural water samples by flame atomic absorption spectrometry. The procedure is based on the retention of analytes in the form of 2,4-dinitrophenyldiazoaminoazobenzene (DNDAA) complex on a mini column of DNDAA-XAD-2 resin. The effects of pH, eluent type, eluent concentration, eluent volume, resin quantity, sample volume, sample flow rate, and matrix ions (Na, Ca, and Mg) were investigated on the recovery of the metals using model solutions. The detection limit for Cd, Co, and Cu was 0.062, 0.084, and 0.057 μg L−1 and the quantification limit was 0.17, 0.24, and 0.12 μg L−1 respectively. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The developed method was applied to the determination of trace metal ions in tap water, river water samples with satisfactory results.  相似文献   

11.
《Analytical letters》2012,45(6):1211-1228
Abstract

A multi‐element flow injection (FI) system with spectrophotometric detection was developed for sequential determination of Zn(II), Cu(II), Cd(II), Pb(II), and Hg(II). Dithizone reagent was used for the previously mentioned analytes and it was prepared on line by using a solid reagent column (SRC). Bear in mind that the most hazardous elements for environmental contamination are lead, cadmium, and mercury; a multi‐element FI system with preconcentration steps is proposed to determine their trace levels in natural waters. Results obtained for different samples agreed satisfactorily with those obtained by the reference method inductively coupled plasma‐atomic emission spectrometry (ICP‐AES). Detection limits were 5.4, 5.0 and 14 µg L?1 for Cd(II), Pb(II), and Hg(II), respectively. The percent of relative standard deviation (RSD) was better than 4.5% for each one.  相似文献   

12.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

13.
《Analytical letters》2012,45(3):579-587
Abstract

This paper reports on the synthesis of a new chromogenic reagent, 2‐carboxyl‐1‐naphthalthiorhodanine (CNTR). A high sensitive, selective, and rapid method for the determination of gold based on the rapid reaction of gold with CNTR and the solid phase extraction of the colored chelate with a reversed phase polymer‐based C18 cartridge was developed. In the presence of 0.05–0.5 mol L?1 of phosphoric acid solution and emulsifier‐OP medium, CNTR reacts with gold to form a red chelate of a molar ratio 1∶3 (gold to CNTR). This chelate was enriched by the solid phase extraction with a polymer‐based C18 cartridge and the retained chelate was eluted from the cartridge with dimethyl formamide (DMF). The enrichment factor of 100 was achieved. In the DMF medium, the molar absorptivity of the chelate is 1.35×105 L · mol?1 · cm?1 at 540 nm. Beer's law is obeyed in the range of 0.01~2 µg mL?1 in the measured solution. The relative standard deviation for 11 replicates sample of 0.5 µg L?1 level is 2.05%. The detection limit, based on three times the standard deviation is 0.02 µg L?1 in the original sample. This method was applied to the determination of gold in water and ore with good results.  相似文献   

14.
《Analytical letters》2012,45(13):1799-1809
A simple, reliable, and effective analytical method was developed for the simultaneous determination of five organotin compounds (OTCs) including monobutyltin trichloride dibutyltin dichloride tributyltin chloride tetrabutyltin and triphenyltin chloride in white wines. The OTCs were derivatized with sodium tetraethylborate (NaBEt4), and their derivatives were extracted by liquid-liquid extraction (LLE) into n-hexane. The experimental variables, such as type and volume of extraction solvents, amount of derivatization reagent NaBEt4 and extraction time were optimized. The determination of ethylated derivatives of OTCs in the final extracts was carried out by gas chromatography-mass spectrometry (GC-MS). Under optimized conditions, good linearity was observed when analytical concentrations were in the range of 0.01–4.0 µg · mL?1, the linearity correlation coefficients were between 0.9982 and 0.9987, with the LODs in the range of 0.2–3.0 µg · L?1, and the LOQs varied from 0.6 to 10.0 µg · L?1. The obtained recoveries were in the range of 78.0–120.0%, with the relative standard deviations equal to or lower than 8.1%. This method was applied to the determination of OTCs in white wines with satisfactory results.  相似文献   

15.
仉华 a  c  张炎b  李全民 a  杜新贞c 《中国化学》2009,27(3):518-522
以Cu(II)为光谱探针建立了一种高选择性、高灵敏度测定异烟肼的新方法。试验表明:在pH 6.0时,Cu(II)可被异烟肼还原生成Cu(I),反应生成的Cu(I) 与SCN-反应生成CuSCN白色乳状沉淀,在硝酸钠的存在下该沉淀可被浮选至水相表面。通过测定水相中剩余Cu(II)的量,可以间接测定异烟肼的含量。已反应Cu(II) 的量与异烟肼的浓度呈良好的线性关系,线性范围为0.050-4.50 µg mL-1,检出限为0.048 µg mL-1。该法已经成功的用于药物样品和病人尿液样品中异烟肼含量的测定。  相似文献   

16.
A novel analytical procedure for the determination of Pb(II) and Cd(II) in herbal medicines by differential pulse anodic stripping voltammetry (DPASV) on Nafion‐coated bismuth film electrode (NCBFE) was proposed and experimentally validated. Various experimental parameters, which influenced the response of the NCBFE to these metals in real samples, were optimized. The results showed that there were well‐defined peaks of Pb and Cd in herb samples at deposition potential of ?1.2 V and deposition time of 300 s. The analytical performance of the NCBFE was evaluated in the presence of dissolved oxygen, with the determination limits of 0.35 µg·L?1 for Pb and 0.72 µg·L?1 for Cd and recoveries of 87.8% –105.4% for Pb and 89.5% –108.5% for Cd obtained from different samples. The Pb and Cd concentrations in the studied samples have been also determined by graphite furnace atomic absorption spectrometry (GFAAS), suggesting that there was a satisfactory agreement between the two techniques, with relative errors lower than 6.5% in all cases. The great advantages of the proposed method over the spectroscopic method were characterized by its simplicity, selectivity and short analysis time, simultaneous analysis of different metals and cost‐efficiency.  相似文献   

17.
A facile,rapid and sensitive spectrophotometric method was developed for the determination of carbaryl in itsformulations,water and grain(rice and wheat)samples with newly synthesised reagent.The proposed method wasbased on the alkaline hydrolysis of carbaryl pesticide and thus resulted 1-naphthol was coupled with diazotised4,4'-methylene-bis-m-nitroaniline in basic medium(pH 9)to give red colored product having λ_(max)480 nm for dia-zonium method(DM)or 1-naphthol reacts with 4,4'-methylene-bis-m-nitroaniline in the presence of oxidising agentpotassium dichromate(K_2Cr_2O_7)to give red colored product having λ_(max)510 nm for oxidation method(OM).Theformation of colored derivatives with the coupling agent is instantaneous and stable for 48 h(DM)and 32 h(OM)respectively.Beer's law was obeyed in the concentration range of 0.2—10.0 μg·mL~(-1)for DM and 0.2—0,150μg·mL~(-1)for OM.The proposed methods are sensitive,easy to operate and permitted for the determination of car-baryl with detection limits of 0.028 μg·mL~(-1)for DM and 0.024 μg·mL~(-1)for OM respectively.The experimentalresults indicate that the procedure can eliminate the fundamental interferences caused by other pesticides andnon-target ions,which made the methods more sensitive and selective.The method was applicable to the determina-tion of carbaryl residue in water and food grain samples up to μg level.  相似文献   

18.
《Analytical letters》2012,45(11):2273-2284
Abstract

A novel voltammetric method—anodic—using a bismuth/poly(aniline) film electrode has been developed for simultaneous measurement of Pb(II) and Cd(II) at low µg L?1 concentration levels by stripping voltammetry. The results confirmed that the bismuth/poly(aniline) film electrode offered high‐quality stripping performance compared with the bismuth film electrode. Well‐defined sharp stripping peaks were observed for Pb(II) and Cd(II), along with an extremely low baseline. The detection limits of Pb(II) and Cd(II) are 1.03 µg L?1 and 1.48 µg L?1, respectively. The bismuth/poly (aniline) electrode has been applied to the determination of Pb(II) in tap water samples with satisfactory results.  相似文献   

19.
《Analytical letters》2012,45(11):1921-1930
This paper describes a simple and sensitive method for the determination of manganese in human urine by graphite furnace atomic absorption spectroscopy (GFAAS), which includes sample preparation by microwave digestion. Matrix modifier combinations, the digestion power, pyrolysis, and atomization temperatures were optimized. A mixture of 5.0 µg Pd(NO3)2 and 3.2 µg Mg(NO3)2 modifier presented the best performance. The optimal temperatures for pyrolysis and atomization were 1500°C and 1950°C, respectively. The GFAAS method was compared to inductively coupled plasma–mass spectrometry (ICP–MS) for the determination of manganese in urine. Analytical figures of merit for GFAAS and ICP–MS were: accuracy (3.46%, 2.19%), precision (3.61%, 5.84%), LOD (0.109 µg · L?1, 0.015 µg · L?1), LOQ (0.327 µg · L?1, 0.045 µg · L?1), and recovery (80–100%, 74–89%). Both methods were employed for the determination of Mn in urine and the results were compared statistically.  相似文献   

20.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号