首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(? x t , x t ). The state space is a closed subset in a manifold of C 2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \({a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}\).  相似文献   

2.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

3.
The problem of stabilizing a solution to the 2D Stokes system defined in the exterior of the bounded domain with smooth boundary is investigated, i.e. for a given initial velocity field and prescribed positive number k > 0 one has to construct a control function defined on the boundary such that the solution stabilizes to zero at the rate of 1/t k .  相似文献   

4.
The influences of fuel Lewis number LeF on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with LeF ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ?= 0.2, 0.4 and 0.6) and the Taylor micro-scale l? of equivalence ratio ? variation (i.e. l?/lf= 2.1, 5.5 and 8.3 with lf being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ? and l?/lf for global mean equivalence ratio 〈?〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing LeF during the period of external energy deposition. The initial values of LeF, u/Sb(?=1), ? and l?/lf have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u/Sb(?=1), the extent of burning decreases with increasing LeF. An increase in u leads to a monotonic reduction in the burned gas mass for all values of LeF in all stratified mixture cases but an opposite trend is observed for the LeF=0.8 homogeneous mixture. It has been found that an increase in ? has adverse effects on the burned gas mass, whereas the effects of l?/lf on the extent of burning are non-monotonic and dependent on ? and LeF. Detailed physical explanations have been provided for the observed LeF, u/Sb(?=1), ? and l?/lf dependences.  相似文献   

5.
The Navier-Stokes system for a steady-state barotropic nonlinear compressible viscous flow, with an inflow boundary condition, is studied on a polygon D. A unique existence for the solution of the system is established. It is shown that the lowest order corner singularity of the nonlinear system is the same as that of the Laplacian in suitable L q spaces. Let ω be the interior angle of a vertex P of D. If \(\) and \(\), then the velocity u is split into singular and regular parts near the vertex P. If α < 2 and \(\) or if α > 2 and 2 < q < ∞&;, it is shown that u∈ (H 2, q (D))2.  相似文献   

6.
We report on the interplay between creep and residual stresses in a carbopol microgel. When a constant shear stress σ is applied below the yield stress σ y, the strain is shown to increase as a power law of time, γ(t) = γ 0 + (t/τ) α , with an exponent α = 0.39 ± 0.04 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some typical value σ c ? 0.2σ y, the microgel experiences a more complex, anomalous creep behavior, characterized by an initial decrease of the strain, that we attribute to the existence of residual stresses of the order of σ c that persist after a rest time under a zero shear rate following preshear. The influence of gel concentration on creep and residual stresses are investigated as well as possible aging effects. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.  相似文献   

7.
A direct numerical simulation database of the flow around a NACA4412 wing section at R e c = 400,000 and 5° angle of attack (Hosseini et al. Int. J. Heat Fluid Flow 61, 117–128, 2016), obtained with the spectral-element code Nek5000, is analyzed. The Clauser pressure-gradient parameter β ranges from ? 0 and 85 on the suction side, and from 0 to ? 0.25 on the pressure side of the wing. The maximum R e ?? and R e τ values are around 2,800 and 373 on the suction side, respectively, whereas on the pressure side these values are 818 and 346. Comparisons between the suction side with zero-pressure-gradient turbulent boundary layer data show larger values of the shape factor and a lower skin friction, both connected with the fact that the adverse pressure gradient present on the suction side of the wing increases the wall-normal convection. The adverse-pressure-gradient boundary layer also exhibits a more prominent wake region, the development of an outer peak in the Reynolds-stress tensor components, and increased production and dissipation across the boundary layer. All these effects are connected with the fact that the large-scale motions of the flow become relatively more intense due to the adverse pressure gradient, as apparent from spanwise premultiplied power-spectral density maps. The emergence of an outer spectral peak is observed at β values of around 4 for λ z ? 0.65δ 99, closer to the wall than the spectral outer peak observed in zero-pressure-gradient turbulent boundary layers at higher R e ?? . The effect of the slight favorable pressure gradient present on the pressure side of the wing is opposite the one of the adverse pressure gradient, leading to less energetic outer-layer structures.  相似文献   

8.
9.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

10.
In view of its high precision and high efficiency, three-dimensional digital image correlation (3D-DIC) is widely used to accurately measure full-field deformation. A spatiotemporal experimental study using 3D-DIC to explore the Portevin–Le Chatelier (PLC) deformational behavior, provides a new insight into the whole 3D deformation field, including the out-of-plane displacement, and in particular the relationship between the serrations and the strain field in the deformation bands corresponding to individual serrations. Specimens 1, 2 and 3 mm thick of 5456 Al-based alloy were tested in uniaxial tension at room temperature at strain rates from 1.8 × 10?4 to 9.1 × 10?3s?1. The spatial and temporal characteristics of the strain localization were quantitatively analyzed. The out-of-plane displacement increment field (w) of the localized bands was observed by 3D-DIC, and found to be related to the specimen thickness and the in-plane strain increment. The largest displacement increments were respectively 15, 10 and 5 μm for 3, 2 and 1 mm specimens at maximum strain increment of about 12000 με. The elastic shrinkage outside the deformation bands was found to be an essential characteristic of the PLC effect. The width of the PLC band (wband) increased with increasing thickness; the angle of the PLC band (??band) was not affected by either specimen thickness or serration amplitude. Temporally, the serrations in the plots both of in-plane strain and out-of-plane displacement vs. time coincided throughout the entire loading procedure. When PLC banding occurred, the serration amplitude within the bands was found to be proportional to the maximum strain increment in the direction of the applied tensile force (??max).  相似文献   

11.
An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. Local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f+=0.44, 0.66 and 0.88) with a fixed forcing amplitude (A+=0.6) were employed at Re θ =690. The effect of three different forcing angles (α=60°, 90° and l20°) was investigated under a fixed forcing frequency (f+=0.088). The PIV results showed that the wall-region velocity decreases on imposition of the local forcing. Inspection of the phase-averaged velocity profiles revealed that spanwise large-scale vortices are generated downstream of the slot and persist farther downstream. The highest reduction in skin friction was achieved at the highest forcing frequency (f+=0.088) and a forcing angle of α=120°. The spatial fraction of the vortices was examined to analyze the skin friction reduction.  相似文献   

12.
In a bounded domain \({\Omega \subset \mathbb R^2}\) with smooth boundary we consider the problem
$\Delta u = 0 \quad {\rm{in }}\, \Omega, \qquad \frac{\partial u}{\partial \nu} = \frac1\varepsilon f(u) \quad {\rm{on }}\,\partial\Omega,$
where ν is the unit normal exterior vector, ε > 0 is a small parameter and f is a bistable nonlinearity such as f(u) = sin(π u) or f(u) = (1 ? u 2)u. We construct solutions that develop multiple transitions from ?1 to 1 and vice-versa along a connected component of the boundary ?Ω. We also construct an explicit solution when Ω is a disk and f(u) = sin(π u).
  相似文献   

13.
It is shown that the governing equation for the stream function of the Darcy free convection boundary layer flows past a vertical surface is invariant under arbitrary translations of the transverse coordinate y. The consequences of this basic symmetry property on the solutions corresponding to a prescribed surface temperature distribution T w (x) are investigated. It is found that starting with a “primary solution” which describes the temperature boundary layer on an impermeable surface, infinitely many “translated solutions” can be generated which form a continuous group, the “translation group” of the given primary solution. The elements of this group describe free convection boundary layer flows from permeable counterparts of the original surface with a transformed temperature distribution \({\tilde {T}_w \left( x \right)}\), when simultaneously a suitable lateral suction/injection of the fluid is applied. It turns out in this way that several exact solutions discovered during the latter few decades are in fact not basically new solutions, but translated counterparts of some formerly reported primary solutions. A few specific examples are discussed in detail.  相似文献   

14.
An improved expansion of the parabolized stability equation(iEPSE) method is proposed for the accurate linear instability prediction in boundary layers. It is a local eigenvalue problem, and the streamwise wavenumber α and its streamwise gradient dα/dx are unknown variables. This eigenvalue problem is solved for the eigenvalue dα/dx with an initial α, and the correction of α is performed with the conservation relation used in the PSE. The i EPSE is validated in several compressible and incompressible boundary layers. The computational results show that the prediction accuracy of the i EPSE is significantly higher than that of the ESPE, and it is in excellent agreement with the PSE which is regarded as the baseline for comparison. In addition, the unphysical multiple eigenmode problem in the EPSE is solved by using the i EPSE. As a local non-parallel stability analysis tool, the i EPSE has great potential application in the eNtransition prediction in general three-dimensional boundary layers.  相似文献   

15.
It has been long observed that cumbersome parameters are required for the traditional viscoelastic models to describe complex rheological behaviors. Inspired by the relationship between normal and anomalous diffusions, this paper tentatively employs t α to replace t, called as the scaling transformation, in the traditional creep compliance and relaxation modulus. With this methodology, the relaxation modulus is found to agree with the well-known Kohlrausch-Williams-Watts (KWW) stretched exponential function. The fitting results confirm that the proposed models accurately characterize rheological behaviors only with one more parameter α. Moreover, it is noted that the present formulations are directly related to the fractal derivative viscoelastic models and the index α is actually the order of the fractal derivative.  相似文献   

16.
In this article, we study the dynamic transition for the one dimensional generalized Burgers equation with periodic boundary condition. The types of transition are dictated by the sign of an explicitly given parameter b, which is derived using the dynamic transition theory developed by Ma and Wang (Phase transition dynamics. Springer, New York, 2014). The rigorous result demonstrates clearly the types of dynamics transition in terms of length scale l, dispersive parameter δ and viscosity ν.  相似文献   

17.
The long-time asymptotics is analyzed for all finite energy solutions to a model\(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e?iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ ? m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled\(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.  相似文献   

18.
The goal of this study is to present a first step towards establishing criteria aimed at assessing whether a particular adverse-pressure-gradient (APG) turbulent boundary layer (TBL) can be considered well-behaved, i.e., whether it is independent of the inflow conditions and is exempt of numerical or experimental artifacts. To this end, we analyzed several high-quality datasets, including in-house numerical databases of APG TBLs developing over flat-plates and the suction side of a wing section, and five studies available in the literature. Due to the impact of the flow history on the particular state of the boundary layer, we developed three criteria of convergence to well-behaved conditions, to be used depending on the particular case under study. (i) In the first criterion, we develop empirical correlations defining the R e ?? -evolution of the skin-friction coefficient and the shape factor in APG TBLs with constant values of the Clauser pressure-gradient parameter β = 1 and 2 (note that β = δ ?/τ w dP e /dx, where δ ? is the displacement thickness, τ w the wall-shear stress and dP e /dx the streamwise pressure gradient). (ii) In the second one, we propose a predictive method to obtain the skin-friction curve corresponding to an APG TBL subjected to any streamwise evolution of β, based only on data from zero-pressure-gradient TBLs. (iii) The third method relies on the diagnostic-plot concept modified with the shape factor, which scales APG TBLs subjected to a wide range of pressure-gradient conditions. These three criteria allow to ensure the correct flow development of a particular TBL, and thus to separate history and pressure-gradient effects in the analysis.  相似文献   

19.
This research aims at gaining some physical insight into the problem of scalar mixing, following the time evolution of propagating iso-surfaces, Y (x, t) = constant, where Y (x, t) stands for any scalar field (e.g., species mass fraction or temperature). First, a rigorous kinematic analysis of non-material line, surface and volume elements, related to propagating iso-scalar surfaces, is presented; this formalism is valid for both constant and variable density flows. Time rates of change of the normal distance and volume between two adjacent iso-surfaces and of area elements, rotation rates of lines and surface elements and an evolution equation for the local mean curvature are obtained. Line and area stretch rates, which encompass additive contributions from the flow and the displacement speed (due to diffusion and reaction), are identified as total strain rates, normal and tangential to the iso-surfaces. Volumetric dilatation rates, addition of line plus area stretch rates, include the mass entrainment rate per unit mass into the non-material volume. Flow and added vorticities, the latter due to gradients of the displacement speed, yield the total vorticity, which provides the real angular velocity of lines and surface elements. A 5123 DNS database for the mixing of inert and reactive scalars in a box of forced statistically stationary and homogeneous turbulence of a constant-density fluid is then examined. A strongly segregated scalar field is prescribed as initial condition. A one-step reaction rate with a characteristic chemical time one order of magnitude greater than the Kolmogorov time micro-scale is used. Data are analyzed at 1.051 large-eddy turnover times after initialization of velocity and scalar fields. Mean negative normal (contractive) and positive tangential (stretching) flow strain rates occur over all mass fractions and scalar-gradient magnitudes. However, means of the total normal strain rate, conditional upon mass fraction, scalar-gradient and mean curvature, are positive everywhere and tend to destroy scalar-gradients for small times. Negative conditioned mean total tangential strain rates (area stretch factor) contract local areas, except for large values of scalar-gradients. Conditional averages of total and added enstrophies are almost identical, which implies a negligible contribution of the flow vorticity to the observed rotation of non-material line and surface elements. The added vorticity is exactly tangential to the iso-surfaces, whereas the flow and total ones are predominantly tangential. Flow sources/sinks of the mean curvature transport equation are much smaller than the added contributions; for this particular DNS database, the local mean curvature development is self-induced by spatial changes of the displacement speed.  相似文献   

20.
We consider the stress-strain state of a plate having a doubly connected domain S bounded from the outside by a circle of radius R and from the inside by an ellipse with two rectilinear cuts. The cuts lie symmetrically on the x-axis. The plate is subjected to various forces: the hole contour (the ellipse) is under the action of uniformly distributed forces of intensity q, and the cut shores are free of loads; at the points ±ib of the imaginary axis, the plate is under the action of a lumped force P.The solution of the problem is reduced to determining two analytic functions φ(z) and ψ(z) satisfying certain boundary conditions (depending on the type of the acting loads).We use the Kolosov-Muskhelishvili method to reduce the problem to a system of linear algebraic equations for the coefficients in the expansions of the functions φ(z) and ψ(z). The solution thus obtained is illustrated by numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号