首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of NaCl with solid water, deposited on tungsten at 80 K, was investigated with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS) (He I). We have studied the ionization of Cl(3p) and the 1b(1), 3a(1), and 1b(2) bands of molecular water. The results are supplemented by first-principles density functional theory (DFT) calculations of the electronic structure of solvated Cl(-) ions. We have prepared NaCl/water interfaces at 80 K, NaCl layers on thin films of solid water, and H(2)O ad-layers on thin NaCl films; they were annealed between 80 and 300 K. At 80 K, closed layers of NaCl on H(2)O, and vice versa, are obtained; no interpenetration of the two components H(2)O and NaCl was observed. However, ionic dissociation of NaCl takes place when H(2)O and NaCl are in direct contact. Above 115 K solvation of the ionic species Cl(-) becomes significant. Our results are compatible with a transition of Cl(-) species from an interface site (Cl in direct contact with the NaCl lattice) to an energetically favored configuration, where Cl species are solvated. The DFT calculations show that Cl(-) species, surrounded by their solvation shell, are nevertheless by some extent accessed by MIES because the Cl(3p)-charge cloud extends through the solvation shell. Water desorption is noticeable around 145 K, but is not complete before 170 K, about 15 K higher than for pure solid water. Above 150 K the NaCl-induced modification of the water network gives rise to gas phase like structures in the water spectra. In particular, the 3a(1) emission turns into a well-defined peak. This suggests that under these conditions water molecules interact mainly with Cl(-) rather than among themselves. Above 170 K only Cl is detected on the surface and desorbs around 450 K.  相似文献   

2.
The interaction of CsF with multilayered water has been investigated with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy with HeI (UPS(HeI)). We have studied the emission from the ionization of H2O states 1b1, 3a1, and 1b2; of Cs5p and of F2p. We have prepared CsF-H2O interfaces, namely, CsF layers on thin films of multilayered water and vice versa; they were annealed between 80 and about 280 K. Up to about 100 K, a closed CsF layer can be deposited on H2O and vice versa; no interpenetration of the two components H2O and CsF could be observed. Above 110 K, CsF (H2O) layers deposited on thin H2O (CsF) films (stoichiometry CsF.1.5H2O) gradually transform into a mixed layer containing F, Cs, and H2O species. When annealing, H2O molecules can be detected up to 200 K from the mixed F-Cs-H2O layer (while for pure H2O desorption is essentially complete at 165 K); a water network is not formed under these conditions, and all H2O molecules are involved in bonding with Cs+ and F- ions. When CsF is deposited at 120 K on sufficiently thick water multilayers, full solvation of both F and Cs takes place, even for the species closest to the surface, as long as the stoichiometry remains CsF.(H2O)n with n > 3.  相似文献   

3.
The interaction of formic acid (HCOOH) with solid water, deposited on tungsten at 80 K, was investigated. We have prepared and annealed formic acid (FA)/water interfaces (FA layers on thin films of solid water and H(2)O adlayers on thin FA films). Metastable impact electron spectroscopy and ultraviolet photoemission spectroscopy (He I and II) were utilized to study the electron emission from the 10a' to 6a' molecular orbitals (MOs) of FA, and the 1b(1), 3a(1), and 1b(2) MOs of H(2)O. These spectra were compared with results of density-functional theory calculations on FA-H(2)O complexes reported in Ref. 14 [A. Allouche, J. Chem. Phys. 122, 234703(2005), (preceding paper)]. Temperature programmed desorption was applied for information on the desorption kinetics. Initially, FA is adsorbed on top of the water film. The FA spectra are distorted with respect to those from FA monomers; it is concluded that a strong interaction exists between the adsorbates. Even though partial solvation of FA species takes place during annealing, FA remains in the top layer up to the desorption of the water film. When H(2)O molecules are offered to FA films at 80 K, no water network is formed during the initial stage of water exposure; H(2)O molecules interact individually via H bonds with the formic acid network. Experiment and theory agree that no water-induced deprotonation of the formic acid molecules takes place.  相似文献   

4.
Interfaces between films of benzenes (C(6)H(6);C(6)H(5)Cl;2-C(6)H(4)OHCl) and solid H(2)O on tungsten substrates were studied between 80 and 200 K with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy [UPS(HeI and II)]. The following cases were studied in detail: (i) Adsorption of the benzenes on solid water in order to simulate their interaction with ice particles, and (ii) deposition of water on benzene films in order to simulate the process of water precipitation. In all cases the prepared interfacial layers were annealed up to 200 K under in situ control of MIES and UPS. The different behavior of the interfaces for the three studied cases is traced back to the different mobilities of the molecules with respect to that of water. The interaction between H(2)O and the benzenes at the interfaces is discussed on the basis of a qualitative profile for the free energy of that component of the interface which has the larger mobility. Possible implications of the present results for atmospheric physics are briefly mentioned.  相似文献   

5.
In the present study, we compare the adsorption of Na on amorphous D(2)O ice films, held at 10 and 100 K. OH, D(2)O, and Na are easily distinguished by their characteristic signatures in metastable impact electron spectroscopy (MIES). It is found that at 10 K substrate temperature the donation of 3sNa charge to the ice film, which is regarded as a precursor for water deprotonation, is significantly reduced relative to 100 K. This observation is discussed on the basis of recent theoretical work, suggesting that a rearrangement of the water molecules at the outermost water surface is the prerequisite for hydration/solvation of the 3sNa electron in the water ice bulk. The MIES spectra, showing spectral features from both OH and D(2)O, can be interpreted as reflecting the composition of the Na-water complexes in the near surface region. The relative intensity of the OH and D(2)O features is the same for 10 and 100 K. This finding suggests that two different sites for Na adsorption exist, one on the perfect water network and the other at OH dangling bond sites whereby, at 10 K, only the latter one leads to deprotonation of D(2)O. Finally, charge exchange phenomena observed when applying electron spectroscopies to ice films are discussed.  相似文献   

6.
The interaction of NaI with amorphous solid water (ASW) and methanol (MeOH) has been investigated with metastable impact electron spectroscopy (MIES), UPS(HeI), and temperature programmed desorption (TPD). We have studied the electron emission from the ionization of the highest-lying states of H(2)O, CH(3)OH, and of 5pI. We have prepared NaI layers on ASW (MeOH) films at about 105 K and annealed them up to about 200 K. Surface segregation of iodide is observed in ASW, as predicted for NaI aqueous solutions. On the other hand, surface segregation is not observed in MeOH, again as predicted for the interaction of NaI with liquid methanol. Electronic properties (ionization potentials, optical band gaps) and water binding energies are reported and are analyzed on the basis of available DFT results for hydrated NaI clusters.  相似文献   

7.
The interaction of pyridine (C5H5N) with polycrystalline Ag and amorphous solid water (D2O) is compared. Metastable impact electron spectroscopy (MIES) and reflection-absorption infrared spectroscopy (RAIRS) were utilized to obtain information on the structure of the pyridine-Ag and pyridine-water interfaces. On polycrystalline Ag, C5H5N adsorbs with its molecular axis perpendicular to the surface whereby a work function decrease of 1.5 eV takes place during the build up of the first layer. In the second layer the molecular axis is tilted with respect to the surface normal. On amorphous solid water, C5H5N is initially adsorbed on top with its ring plane oriented preferentially near parallel with respect to the surface, reflecting the contribution of two different interactions to the bonding, the formation of a pi-hydrogen bond, and competitive bonding via the nitrogen lone pair. Coverage-driven reorientation takes place during the completion of the first monolayer and increases the average tilt angle. We have followed the growth of pyridine films up to the third layer which, according to RAIRS, shows clear signs of condensation. No embedding of pyridine species into the underlying water film can be noticed when heating up to desorption. The exposure of a pyridine film at 124 K to D2O molecules does not lead to on top adsorption. Instead, D2O becomes initially embedded into the pyridine film, and RAIRS indicates solvation of the pyridine species.  相似文献   

8.
Ultrathin glycine-ice films (nanolayers) have been prepared in ultrahigh vacuum by condensation of H(2)O and glycine at 110 K and 150 K on single crystalline Al(2)O(3) surfaces and have been investigated by temperature programed thermal desorption, x-ray photoelectron spectroscopy, and work function measurements. Various layer architectures have been considered, including glycine-on-ice, ice-on-glycine, and mixed glycine-ice nanolayers. Low coverages of adsorbed glycine molecules on amorphous ice surfaces suppress the amorphous-to-crystalline phase transition in the temperature range 140-160 K in near-surface regions and consequently lead to a lower desorption temperature of H(2)O molecules than from pure ice layers. Thicker glycine overlayers on ice provide a kinetic restriction to H(2)O desorption from the underlying ice layers until the glycine molecules become mobile and develop pathways for water desorption at higher temperature (>170 K). Ice overlayers do not wet glycine film surfaces, but the glycine molecules on ice are sufficiently immobile at 110 K, so that continuous glycine overlayers form. In mixed glycine-ice nanolayers the glycine phase displays hydrophobic behavior and a phase separation takes place, with the accumulation of glycine near the surfaces of the films.  相似文献   

9.
The adsorption of lithium atoms on rutile TiO2(110) single crystals was studied with metastable‐induced electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS(HeI)) between 130 K and room temperature. Some auxiliary measurements on W(110) required for data interpretation are also reported. At 130 K ionic adsorption at titania prevails up to 0.3 monolayer equivalents (MLE) as judged from the weak Li(2s) emission in MIES for these exposures. The reduction of the Ti4+ cation is manifested by the growth of an occupied bandgap state in UPS: the alkali s‐electron is transferred to a near‐surface cation, thereby reducing it to Ti3+ 3d. The transfer of the s‐electron is responsible for the observed work function decrease up to ~0.5 MLE coverage. From the analysis of the UPS Ti3+ 3d signal, as well as from the Li(2s) emission, it is concluded that the degree of ionicity of the adsorbed Li decreases from 100% at 0.3 MLE to 40% at 0.7 MLE. Above 0.5 MLE the MIES spectra are dominated by an Li(2s)‐induced peak indicating the presence of Li with an at least partially filled 2s orbital. At temperatures above 160 K this peak is almost absent. Excluding Li desorption at these temperatures, we suggest that Li moves into or below the rutile TiO2(110) surface above 160 K. Lithium insertion into the surface and intercalation are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The electron-stimulated sputtering of thin amorphous solid water films deposited on Pt(111) is investigated. The sputtering appears to be dominated by two processes: (1) electron-stimulated desorption of water molecules and (2) electron-stimulated reactions leading to the production of molecular hydrogen and molecular oxygen. The electron-stimulated desorption of water increases monotonically with increasing film thickness. In contrast, the total sputtering--which includes all electron-stimulated reaction channels--is maximized for films of intermediate thickness. The sputtering yield versus thickness indicates that erosion of the film occurs due to reactions at both the water/vacuum interface and the Pt/water interface. Experiments with layered films of D2O and H2O demonstrate significant loss of hydrogen due to reactions at the Pt/water interface. The electron-stimulated sputtering is independent of temperature below approximately 80 K and increases rapidly at higher temperatures.  相似文献   

11.
The adsorption of acetic acid on a proton-ordered water ice surface is modeled using periodic plane-waves density-functional theory. The structures of acetic acid adsorbed as a monomer or oligomers, hydrated or not, are calculated through gradient optimization. The resulting quantum electronic density of states are compared to metastable impact electron spectroscopy (MIES) results and lead to selection of the most plausible structures of acetic acid on water ice. Hypotheses are formulated for the structure of the acid film growing on the ice surface including mainly cyclic dimers and hydrated forms. Adsorptions of single water molecules on acetic acid crystal surfaces are also studied after optimization of the acetic acid crystal bulk and surface structure. More comparisons with spectroscopic studies are proposed in the accompanying paper.  相似文献   

12.
Metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS(HeI)) and x‐ray photoelectron spectroscopy (XPS) were applied to study the interaction of O2, CO and CO2 with Co films at room temperature. The films were produced on Si(100) surfaces under the in situ control of MIES, UPS and scanning tunnelling microscopy (STM). For O2, dissociative adsorption takes place initially and then incorporation of oxygen starts at exposures of ~5 L. Comparison of the MIES and UPS spectra with those published for CoO shows that near‐stoichiometric CoO films can be obtained by co‐deposition of Co and O2. The CO is adsorbed molecularly up to a maximum coverage of ~0.6 monolayer, with the C‐end pointing towards the surface. The CO2 adsorption is dissociative, resulting in the formation of Co–CO bonds at the surface. The resulting oxygen atoms are mostly incorporated into the Co layer. For all studied molecules the interaction with Co is similar to that with Ni. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Molecular beam techniques are used to grow water films on Pt(111) with incident collision energies from 5 to 205 kJ/mole. The effect of the incident collision energy on the phase of vapor deposited water films and their subsequent crystallization kinetics are studied using temperature programmed desorption and infrared spectroscopy. We find that for films deposited at substrate temperatures below 110 K, the incident kinetic energy (up to 205 kJ/mole) has no effect on the initial phase of the deposited film or its crystallization kinetics. Above 110 K, the substrate temperature does affect the phase and crystallization kinetics of the deposited films but this result is also independent of the incident collision energy. The presence of a crystalline ice template (underlayer) does affect the crystallization of amorphous solid water, but this effect is also independent of the incident beam energy. These results suggest that the crystallization of amorphous solid water requires cooperative motion of several water molecules.  相似文献   

14.
Thermal desorption spectroscopy is employed to examine transport mechanisms in structured, nanoscale films consisting of labeled amorphous solid water (ASW, H(2)(18)O, H(2)(16)O) and organic spacer layers (CCl(4), CHCl(3)) prior to ASW crystallization (T approximately 150-160 K). Self-transport is studied as a function of both the ASW layer and the organic spacer layer film thickness, and the effectiveness of these spacer layers as a bulk diffusion "barrier" is also investigated. Isothermal desorption measurements of structured films are combined with gas uptake measurements (CClF(2)H) to investigate water self-transport and changes in ASW film morphology during crystallization and annealing. CCl(4) desorption is employed as a means to investigate the effects of ASW film thickness and heating schedule on vapor-phase transport. Combined, these results demonstrate that the interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase; rather, we propose that intermixing occurs via vapor-phase transport through an interconnected network of cracks/fractures created within the ASW film during crystallization. Consequently, the self-diffusivity of ASW prior to crystallization (T approximately 150-160 K) is significantly smaller than that expected for a "fragile" liquid, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

15.
Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H(2)O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H(2)O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.  相似文献   

16.
Guest-host interactions have been examined experimentally for amorphous solid water (ASW) films doped with CO2 or N2O. The main diagnostics are Fourier transform infrared (FTIR) spectroscopy and temperature programmed desorption (TPD). ASW films deposited at 90 K are exposed to a dopant, and the first molecules that attach to a film enter its bulk until it is saturated with them. Subsequent dopant adsorption results in crystal growth atop the ASW film. There are distinct spectral signatures for these two cases: LO and TO vibrational modes for the crystal overlayer, and an easily distinguished peak for dopant molecules that reside within the ASW film. Above 105 K, the dopant surface layer desorbs fully. Some dopants residing within the ASW film remain until 155 K, at which point the ASW-to-crystalline-ice transition occurs, expelling essentially all of the dopant. No substantial differences are observed for CO2 versus N2O. It is shown that annealing an ASW film to 130 K lowers the film's capacity to include dopants by a factor of approximately 3, despite the fact that the ASW spectral feature centered at approximately 3250 cm(-1) shows no discernible change. Sandwiches were prepared: ASW-dopant-ASW etc., with the dopant layer displaying crystallinity. Raising these samples past 105 K resulted in the expulsion of essentially all of the crystalline dopant. What remained displayed the same spectral signature as the molecules that entered the bulk following adsorption at the surface. It is concluded that the adsorption sites, though prepared differently, have a lot in common. Dangling OH bonds were observed. When they interacted with a dopant, they underwent a red shift of approximately 50 cm(-1). This is in qualitative agreement with studies that have been carried out with weakly bound binary complexes. As a result of this study, a fairly complete, albeit qualitative, picture is in place for the adsorption, binding, and transport of CO2 and N2O in ASW films.  相似文献   

17.
The interaction of methanol (MeOH) with amorphous solid water (ASW) composed of D2O molecules, prepared at 125 K on a polycrystalline Ag substrate, was studied with metastable-impact-electron spectroscopy, reflection-absorption infrared spectroscopy, and temperature-programmed desorption mass spectroscopy. In connection with the experiments, classical molecular dynamics (MD) simulations have been performed on a single CH3OH molecule adsorbed at the ice surface (T=190 K), providing further insights into the binding and adsorption properties of the molecule at the ice surface. Consistently with the experimental deductions and previous studies, MeOH is found to adsorb with the hydroxyl group pointing toward dangling bonds of the ice surface, the CH3 group being oriented upwards, slightly tilted with respect to the surface normal. It forms the toplayer up to the onset of the simultaneous desorption of D2O and MeOH. At low coverage the adsorption is dominated by the formation of two strong hydrogen bonds as evidenced by the MD results. During the buildup of the first methanol layer on top of an ASW film the MeOH-MeOH interaction via hydrogen-bond formation becomes of importance as well. The interaction of D2O with solid methanol films and the codeposition of MeOH and D2O were also investigated experimentally; these experiments showed that D2O molecules supplied to a solid methanol film become embedded into the film.  相似文献   

18.
We examined the acid–base properties of water films adsorbed onto a Ru(0001) substrate by using surface spectroscopic methods in vacuum environments. Ammonia adsorption experiments combined with low‐energy sputtering (LES), reactive ion scattering (RIS), reflection–absorption infrared spectroscopy (RAIRS) and temperature‐programmed desorption (TPD) measurements showed that the adsorbed water is acidic enough to transfer protons to ammonia. Only the water molecules in an intact water monolayer and water clusters larger than the hexamer exhibit such acidity, whereas small clusters, a thick ice film or a partially dissociated water monolayer that contains OH, H2O and H species are not acidic. The observations indicate the orientation‐specific acidity of adsorbed water. The acidity stems from water molecules with H‐down adsorption geometry present in the monolayer. However, the dissociation of water into H and OH on the surface does not promote but rather suppresses the proton transfer to ammonia.  相似文献   

19.
The near-surface structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated as a function of temperature between 100 and 620 K. We used a combination of photoelectron spectroscopies (XPS and UPS), metastable induced electron spectroscopy (MIES), and high-resolution electron energy loss spectroscopy (HREELS). The valence band and HREELS spectra are interpreted on the basis of density functional theory (DFT) calculations. At room temperature, the most pronounced structures in the HREELS, UPS, and MIES spectra are related to the CF3 group in the anion. Spectral changes observed at 100 K are interpreted as a change of the molecular orientation at the outermost surface, when the temperature is lowered. At elevated temperatures, early volatilization, starting at 350 K, is observed under reduced pressure.  相似文献   

20.
The adsorption and desorption kinetics of N2 on porous amorphous solid water (ASW) films were studied using molecular beam techniques, temperature programed desorption (TPD), and reflection-absorption infrared spectroscopy. The ASW films were grown on Pt(111) at 23 K by ballistic deposition from a collimated H2O beam at various incident angles to control the film porosity. The experimental results show that the N2 condensation coefficient is essentially unity until near saturation, independent of the ASW film thickness indicating that N2 transport within the porous films is rapid. The TPD results show that the desorption of a fixed dose of N2 shifts to higher temperature with ASW film thickness. Kinetic analysis of the TPD spectra shows that a film thickness rescaling of the coverage-dependent activation energy curve results in a single master curve. Simulation of the TPD spectra using this master curve results in a quantitative fit to the experiments over a wide range of ASW thicknesses (up to 1000 layers, approximately 0.5 microm). The success of the rescaling model indicates that N2 transport within the porous film is rapid enough to maintain a uniform distribution throughout the film on a time scale faster than desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号