首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
合成了系列M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3 ,Tb3 )样品,研究了样品在真空紫外区域的激发光谱和发射光谱.从激发谱可以看出:M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3 ,Tb3 )在147,172 nm有很强的吸收带.用Mg,Ca完全取代Ba2SiO4∶Tb3 中的Ba ,相对应的晶体的晶格参数逐渐增大,晶场的能量逐渐减少,其激发光谱随着碱土离子半径的增加向长波方向移动.在172 nm真空紫外光激发下,观察到M2SiO4∶Re(M=Mg,Ca,Ba; Re=Tb3 和M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3 ,Tb3 )特征发射;在真空紫外激发下,随着M2SiO4∶Re(M=Mg,Ca,Ba; Re= Ce3 ,Tb3 )中Ce3 含量的增加,M2SiO4∶Re的特征发射明显减弱,并分析讨论了相关发光现象的成因.  相似文献   

2.
合成了系列M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)样品,研究了样品在真空紫外区域的激发光谱和发射光谱。从激发谱可以看出:M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)在147,172nm有很强的吸收带。用Mg,Ca完全取代Ba2SiO4:Tb3+中的Ba,相对应的晶体的晶格参数逐渐增大,晶场的能量逐渐减少,其激发光谱随着碱土离子半径的增加向长波方向移动。在172nm真空紫外光激发下,观察到M2SiO4:Re(M=Mg,Ca,Ba;Re=Tb3+和M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)特征发射;在真空紫外激发下,随着M2SiO4:Re(M=Mg,Ca,Ba;Re=Ce3+,Tb3+)中Ce3+含量的增加,M2SiO4:Re的特征发射明显减弱,并分析讨论了相关发光现象的成因。  相似文献   

3.
采用固相法制备了红色LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca,Sr,Ba)BO3∶Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca,Sr,Ba)BO3∶Sm3+材料也呈多峰发射,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2和4G5/2→6H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)材料的发射强度。  相似文献   

4.
采用高温固相法合成了Ba3Tb(BO3)3和Ba3Tb(BO3)3:Ce3+两种绿色荧光粉,并研究了材料的发光性质.Ba3Tb(BO3)2材料呈多峰发射,发射峰位于439,493,547,589和629 nm,分别对应Tb3+的5D3→7F4和5D4→7F1=6,5,4,3跃迁发射,主峰为547 nm;监测547 nm发射峰,所得激发光谱由4f75d1宽带吸收(200-330 nm)和4f4f电子吸收(330-400 nm)组成,主峰为380 nm.以Ce3+激活Ba3Tb(BO3)3,所得Ba3Tb(BO3)3:Ce3+与Ba3Tb(BO3),材料的发射光谱分布相同,但发射强度明显增强,说明Ce3+对Tb3+产生了很好的敏化作用;监测547 nm最强发射峰,所得激发光谱为宽带,主峰位于360 nm.改变H3BO3量,Ba3Tb(BO3)3:Ce3+材料的发射强度随之变化,当H3BO3过量15 wt%时,发射强度最大.上述研究结果表明Ba3Tb(BO3)3:Ce3+是一种很好的适于UV-LED管芯激发的白光LED用绿色荧光粉.  相似文献   

5.
采用高温固相反应法合成了掺杂Eu3 及Tb3 的17MO-7.88Y2O3-75B2O3样品,研究了它们的光谱特性,结果表明,MO-T2O3-B2O3基质在真空紫外(VUV)区有很强的吸收,MgO-Y2O3-B2O3:Eu在147nm真空紫外光激发下产生对应于Eu3 的5D0→7FJ(J=1,2,3,4)跃迁的590和613 nm强发射峰;MgO-Y2O3-B2O3:Eu中Sr的引入使材料体系在147 nm附近的吸收和在613 nm附近的发射获得明显增强;MgO-Y2O3-B2O3:Tb的真空紫外激发谱除在147 nm附近的基质吸收外,还有对应于Tb3 的4f75d→4f8跃迁位于170,178,195,204,225 nm左右的一组谱峰,两者相互叠加使得材料在真空紫外区(120~220 nm)内都有很好的吸收.  相似文献   

6.
红色LiMBO3 : Re3+(Re=Eu,Sm) 发光材料的特性   总被引:2,自引:1,他引:1       下载免费PDF全文
采用固相法制备了红色LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca, Sr, Ba)BO3 : Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca, Sr, Ba)BO3 : Sm3+材料也呈多峰发射,分别对应Sm3+4G5/26H5/24G5/26H7/24G5/26H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)材料的发射强度。  相似文献   

7.
采用高温固相法合成了用于紫外芯片(UVLED)激发的绿色荧光粉Ca2SrAl2O6:Ce3+,Tb3+。测量了其激发光谱和发射光谱,结果显示,材料的发射谱由峰值位于497,545,595和623nm的4组窄带组成,其中位于545nm的发射峰最强,样品能发射很好的绿光;监测545nm发射峰,得到的激发谱由位于320~400nm之间的激发带组成,能被UVLED很好地激发。研究了Ca2SrAl2O6荧光粉中Ce3+对Tb3+发光的敏化现象,发光的敏化作用缘于Ce3+和Tb3+之间的高效无辐射能量传递。共掺激活剂的最佳掺杂浓度为4mol%。  相似文献   

8.
采用高温固相反应方法在空气中制备了M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 红色发光材料,测量结果显示,材料的主发射峰均位于613 nm处,监测613 nm发射峰时,所得材料的激发光谱相同。研究了Li ,Na 和K 对M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料激发与发射光谱的影响,结果显示,加入Li ,Na 和K 后,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值位置并不发生变化,但材料的激发与发射光谱的峰值强度均得到了不同程度的增强。在Li ,Na 和K 掺入浓度相同的条件下,研究发现,与加入Na 和K 时相比,加入Li 时,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值增强效果最明显。进而研究了Sr3Y2(BO3)4∶Eu3 材料发射峰强度随Li 掺杂浓度的变化情况,结果表明,随着Li 掺杂浓度的增大,Sr3Y2(BO3)4∶Eu3 材料发射峰强度先增大后减小,在Li 浓度为5 mol%时到达峰值,约为未掺杂时的两倍。  相似文献   

9.
采用高温固相反应合成磁铅矿型(Sr,Ba)Al12O19∶RE3 (RE=Ce,Tb)发光材料,X射线衍射结果证明生成单一磁铅矿型结构。Ce3 产生302nm的发射峰和340nm左右的不太明显的肩,分别对应于5d→2F5/2和5d→2F7/2跃迁;激发光谱显示两个宽带峰,158nm峰对应于基质吸收,260 nm峰是由4f-5d跃迁引起的。Tb3 的发射光谱显示特征的5D3→7Fj(j=2,3,4,5)和5D4→7Fj(j=4,5,6)跃迁;在激发光谱中,160nm左右的峰是由基质吸收和Tb3 -O2-电荷迁移带交迭产生的,193nm峰是Tb3 的4f-5d自旋允许跃迁引起的,233nm弱的峰是自旋禁戒4f-5d跃迁产生的。Ce3 的发射和Tb3 的f-f跃迁吸收(~320 nm)完全交迭,并且Tb3 的发光强度随Ce3 的浓度增加而增强,从激发光谱看出,Tb3 发光部分来自于Ce3 的吸收,具有Ce3 →Tb3 能量传递。  相似文献   

10.
采用固相法制备了绿色LiM(M=Ca,Sr,Ba)BO3:Tb3+发光材料.测量结果显示材料均可被紫外(350~410 nm)光激发,发射绿光.研究了Tb3+浓度对材料发射光谱的影响,结果显示,随Tb3+浓度的增大,发射光谱峰位未发生变化,但其强度呈现出先增大后减小的趋势,即:存在浓度猝灭效应.加入电荷补偿剂Li+,Na+和K+提高了LiM(M=Ca,Sr,Ba)BO3:Tb抖材料的发射强度.  相似文献   

11.
白光LED用碱土金属硅酸盐荧光粉的光谱性质   总被引:12,自引:10,他引:2  
采用固相法合成了A:(SrBa)3SiO5:0.024Ce3 ,0.024Li ;B:Sr2.73M0.2SiO5:0.07Eu2 (M=Ba,Mg,Ca);C:(SrBa)3SiO5:xEu2 三个系列的硅酸盐荧光粉。测量了它们的激发光谱和发射光谱。Ce3 激活的硅酸盐荧光粉(A系列)有351,418nm两个激发峰,418nm这个峰较强。随着Ba离子含量的增加,发射光谱峰值波长出现了红移。因此,改变Ba离子的含量,可以改变荧光粉的发射峰值波长,进而调整白光LED的色坐标和显色指数等指标。Eu2 激活的硅酸盐荧光粉(B,C系列)激发光谱是从350~450nm的宽带激发。Ce3 激活的荧光粉发射峰波长要比Eu2 激活的短,在540~555nm左右,而Eu2 激活的发射峰波长在570~583nm范围。在Sr2.73M0.2SiO5:0.07Eu2 系列(B)中,M取Ba时效果较好。在(SrBa)3SiO5:xEu2 系列(C)中,x取不同值发射光谱的峰值波长和半峰全宽有所变化,但是变化的规律不是很明显。用这两种元素作为激活剂的硅酸盐荧光粉均比较适合用于近紫外、紫外和蓝光芯片封装白光LED。在Sr3SiO5:Ce3 ,Li 和Sr3SiO5:Eu2 中掺入Ba可以使发射峰红移。  相似文献   

12.
采用传统的高温固相反应法合成出(Y,Gd)BO3∶Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3∶Tb在147 nm真空紫外光激发下的发射主峰在544 nm(Tb3+的5D4→7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3∶Tb的基质吸收带位于150 nm附近。Gd3+离子对真空紫外区的光吸收有增强作用,存在着Gd3+→Tb3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8 m s,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3∶Tb是一种有前景的PDP用绿色发光材料。  相似文献   

13.
(Sr,Ba)Al12O19:RE3+(RE=Ce,Tb)的VUV发光及Ce3+→Tb3+的能量传递   总被引:1,自引:0,他引:1  
采用高温固相反应合成磁铅矿型(Sr,Ba)Al12O19:RE3 (RE=Ce,Tb)发光材料,X射线衍射结果证明生成单一磁铅矿型结构.Ce3 产生302 nm的发射峰和340 am左右的不太明显的肩,分别对应于5d→2F5/2和5d→2F7/2跃迁;激发光谱显示两个宽带峰,158 nm峰对应于基质吸收,260 nm峰是由4f-5d跃迁引起的.Tb3 的发射光谱显示特征的.D3→1Fi(i=2,3,4,5)和5D4→7Fi(i=4,5,6)跃迁;在激发光谱中,160 nm左右的峰是由基质吸收和Tb -O2-电荷迁移带交迭产生的,193 nm峰是Tb3 的4f-5d自旋允许跃迁引起的,233 nm弱的峰是自旋禁戒4f-5d跃迁产生的.Ce3 的发射和Tb3 的f-f跃迁吸收(~320 nm)完全交迭,并且Tb3 的发光强度随Ce3 的浓度增加而增强,从激发光谱看出,Tb3 发光部分来自于Ce3 的0吸收,具有Cd →Tb3 能量传递.  相似文献   

14.
采用高温固相法制备了新型(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉,其中包括3个二元碱土离子配比系列和3个代表性三元碱土离子配比系列(Ba不变而Mg/Sr比连续变化、Mg/Sr比不变而Ba含量连续变化)共计6个系列,并研究其光谱性能(激发谱和发射谱)、紫外(254和365 nm)发光照相记录及CIE值对应色像。借鉴三元相图的建立思路,由这些二元和代表性三元数据推导三元色像图,用于新型荧光粉的系统开发。所制备的荧光粉系列包括:Mg2SiO4-Sr2SiO4,Ba2SiO4-Sr2SiO4,Mg2SiO4-Ba2SiO4,Ba原子比含量为0.2(Mg/Sr原子比连续变化),Ba原子比含量为0.6(Mg/Sr原子比连续变化),Mg/Sr原子比为1/4(Ba原子比含量连续变化系列)。其对应的254 nm激发下光谱性能、发光照相记录、和CIE色像分析表明:Eu离子可以三价和二价形式存在于(Mg1-x-yBaxSry)2SiO4中;二元系列中(Mg1-xBax)2SiO4和(Ba1-ySry)2SiO4基体中随着Ba原子比的增加荧光粉逐渐由红(对应Eu3+5D0→7F1和5D0→7F2电子跃迁窄带发射)变绿(对应Eu2+4fn-15d→4fn电子跃迁发射宽带发射)且前者变化的更快;二元系列中(Mg1-ySry)2SiO4系列为红色荧光粉,且随着Sr含量增加红色发光增大;三元系列中(Bax(Mg0.2Sr0.8)1-x)2SiO4(Mg/Sr=1/4)随着Ba离子量增加荧光粉也逐渐由红变绿,其变化速度介于Mg/Sr比等于0(即Ba2SiO4-Sr2SiO4系列)和Mg/Sr比等于∝(即Ba2SiO4-Mg2SiO4系列);三元系列中(Ba0.2SryMg0.8-y)1.95SiO4为红色荧光粉,而(Ba0.6SryMg0.4-y)2SiO4随着Mg/Sr原子比增加逐渐由红转蓝绿光。365 nm激发下荧光发射的变化规律与254 nm激发下大体一致,但是同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254nm激发要弱,故(Mg1-xBax)2SiO4,(Ba1-ySry)2SiO4,(Bax(Mg0.2Sr0.8)1-x)2中对应的由红变绿时Ba含量分别为40at%,60at%,60at%(254 nm激发下60at%,80at%,70at%)且(Ba0.6SryMg0.4-y)2SiO4中由红变绿的Mg/Sr比为1/4(254 nm激发下为2/3)。据此建立Eu掺杂Ba2SiO4-Mg2SiO4-Sr2SiO4紫外激发色像图。借由色像图可知(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉紫外激发下发射光变化规律,即基体组分靠近Ba2SiO4端发射绿色而靠近Mg2SiO4或Sr2SiO4端发射红色,Mg/Sr比越大随着Ba原子的增加荧光粉的由红转绿的速度越快;同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254 nm激发要弱,(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉中当Ba>80at%,Mg>90at%(或Sr>80at%)荧光粉可分别用作高效绿色、红色荧光粉;此外,当组分为(Mg0.8Sr0.2)1.95SiO4∶0.05Eu,(Ba0.8Mg0.16Sr0.04)1.95SiO4∶0.05Eu是紫外激发下(254和365 nm)最好的红色和绿色荧光粉。  相似文献   

15.
报道了Ce3+掺杂的碱土金属硼磷酸盐的制备、结构和光谱性质。在助熔剂的作用下,用高温固相反应法制备了MBPO5 (M=Ca,Sr,Ba)样品,并在还原气氛下成功地实现了Ce3+的掺杂。用X射线衍射(XRD)和傅里叶红外吸收谱(FT IRspectra)表征了样品的结构。X射线衍射结果表明,产物为六方相的菱硼硅铈矿(Stillwellite)结构。FT IRspectra给出了BO4、PO4 等基团的信息。测量并分析了材料在室温下的真空紫外紫外(VUV UV)激发光谱及相应的发射光谱。在紫外光的激发下,观察到Ce3+的5d→2FJ(J= 7 /2, 5 /2)的发射,分析了基质晶格对Ce3+的激发和发射谱的影响,并测量了BaBPO5 基质中Ce3+的发光寿命。  相似文献   

16.
通过化学共沉淀法制备了适合近紫外激发的SrZn1-x(WO4)2∶xTb3+∶yCe3+系列绿色荧光粉。利用X射线衍射(XRD)分析了不同掺杂比例对样品物相的影响。采用荧光光谱(PL)对样品的激发光谱和发射光谱进行了表征。分别讨论了稀土Tb3+单掺及Ce3+和Tb3+共掺对样品发光性能的影响。XRD分析表明:样品的主衍射峰与标准卡片(JCPDS 08-0490和JCPDS 15-0774)的衍射峰基本一致,说明单掺和共掺稀土离子均未改变基质晶格结构。在样品的激发光谱中,223nm为主激发峰,属于Tb3+的7F—7 D自旋允许跃迁。在223nm的紫外光激发下,样品发射光谱主发射峰位置在543nm,归属于Tb3+的5 D4→7 F5跃迁。当Ce3+和Tb3+共掺时,峰型和位置变化不大,Ce3+和Tb3+掺杂摩尔分数比为0.02∶0.06时,发光强度得到很大提高,说明Ce3+和Tb3+之间存在着能量传递。  相似文献   

17.
Ln(BO_3,PO_4)[Ln=La,Y]基质中Ce~(3+)、Tb~(3+)、Gd~(3+)的光谱   总被引:2,自引:0,他引:2  
研究了硼磷酸镧和硼磷酸钇基质中Ce3 +、Tb3+、Gd3+的发射光谱和激发光谱。结果表明 :La(BO3,PO4 ) :Ce ,Tb体系中加入钆后 ,Ce3+的发射降低 ,Tb3+的发射增强 ;Y(BO3,PO4 ) :Ce ,Tb体系中加入钆后 ,Ce3+和Tb3 +的发射均增强 ,且前者增加的幅度高于后者。因此在La(BO3,PO4 ) :Ce ,Tb ,Gd体系中Gd3+离子起着能量传递中间体和敏化剂的作用 ;在Y(BO3,PO4 ) :Ce,Tb ,Gd体系中Gd3 +离子只起敏化剂作用 ,并且阻碍Ce3+→Tb3+的能量传递。与Y(BO3,PO4 ) :Ce,Tb ,Gd相比 ,La(BO3,PO4 ) :Ce,Tb ,Gd对紫外吸收强 ,2 5 4nm激发下发出的光绿色纯度高 ,强度大 ,更适合做荧光灯中的绿粉  相似文献   

18.
采用高温固相法合成了Ca2SnO4∶Tb3+绿色荧光粉。利用X射线衍射分析了Ca2SnO4∶Tb3+物相的形成。测量了Ca2SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移。发射光谱由四个主要发射峰组成,峰值分别位于491,543,588和623nm处,Tb3+以5 D4—7 F5(543nm)跃迁发射最强,低掺杂浓度下,Tb3+的7 F6能级出现斯托克劈裂,劈裂峰(481nm处)随Tb3+浓度增加,先增强然后减弱;在发光强度方面,随Tb3+浓度的增大呈现先增大后减小的趋势,当Tb3+摩尔浓度为9%时,发光强度最大,根据Dexter理论,确定了在Ca2SnO4基质中Tb3+自身浓度猝灭机理。荧光寿命测试表明Tb3+在Ca2SnO4基质中荧光衰减平均寿命为4.4ms。  相似文献   

19.
采用高温固相反应法制备了Ba1.97Ca1-x(B3O6)2∶Eu2+,Mnx2+(x=0,0.03,0.06,0.15)荧光粉,研究了其相组成与荧光特性。结果表明,样品具有单相Ba2Ca(B3O6)2晶体结构。Eu2+同时占据Ba2+格位和Ca2+格位。在317 nm波长的紫外光激发下,Eu2+辐射出峰值在450 nm附近的宽谱蓝光。通过能量传递作用,Mn2+辐射峰值为600 nm左右的宽谱红光。蓝光和红光叠加形成色坐标为(x=0.371,y=0.282)的近白光发射。样品的激发光谱分布在250~400 nm的波长范围,有望在紫外激发的白光LED中获得应用。  相似文献   

20.
用高温固相反应合成了Ba0 04Mg0 16Sr0 8O·nAl2O3∶Mn2+0 07(n=4 1,4 2…4 9)和Ba0 1Mg0 1Sr0 8O·nAl2O3∶Mn2+0 07(n=4 1,4 2…4 9)铝酸盐体系发光材料。X射线衍射呈单相,说明生成了完全互溶的连续固溶体。经检测发现Mg2+,Sr2+的引入有效地优化了发光基质,使Mn2+在真空紫外激发下的发射明显增强。在Ba0 04Mg0 16Sr0 8O·nAl2O3∶Mn2+0 07体系中,在一定范围内改变Al3+含量(n值)可适当调整激发光谱峰位;适当调整Al3+和Mn2+的含量比可以改变体系的发光强度,以满足等离子平板显示(PDP)技术的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号