首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对小波分析在故障诊断时的局限性,将小波分析和支持向量机算法相结合,提出基于小波包能量谱及支持向量机算法(SVM)的故障检测方法.该方法以振动信号小波包分解后各子频带的能量作为故障检测特征,利用SVM算法对轴承故障进行检测实验.结果表明:小波包能量谱能有效地反映轴承信号特征,并对故障进行检测.该方法同基于Lipschitz指数熵、单奇异点检测,以及小波包能量谱与神经网络相结合的故障检测方法进行比较,检测率均优于其他三种常用方法.  相似文献   

2.
3.
基于Morlet小波时间尺度表示的地下连续墙无损检测   总被引:1,自引:0,他引:1  
对Morlet小波及其变换特性进行了分析,利用其良好的时频正则性及复分析特性,把一维检测波映射到二维时间尺度表示(TSR)-Scalogram谱图上。Scalogram承载了介质结构的丰富信息,利用这些信息能够实现对介质的全面分析和缺陷识别,辅以Morlet小波变换的实部模极大值,可以对缺陷进行准确定位。该方法有效地弥补了基于Hilbert变换的复信号分析(CSA)、短时傅立叶变换(STFT)及二次时频表示(TFR)等方法的不足。对水泥土地下连续墙进行的无损检测结果表明,基于Morlet小波TSR的检测方法有较好的实用性,它为结构无损检测领域提供了一条新的技术路线。为进一步完善前述方法,将Morlet小波与Dergauss小波进行优势联合,可以避免模极大值线分叉现象,有利于提高定量解释精度。  相似文献   

4.
提出了一种基于核函数的多用户检测(MUD)方案,与常规的支持向量机(SVM)学习算法不同的是,判别输出函数中的支持向量采用一种稀疏核逼近方法获取,而其对应系数则由输入采样协方差矩阵的广义特征向量构成,整个算法避免了常规的二次规划(QP)求解过程.仿真结果表明,采用核函数算法的检测性能与SVM检测性能接近,但在较大规模样本集下可有效减小计算量.  相似文献   

5.
针对短时电能质量变化和暂态扰动现象的不同特点,建立常见电能质量扰动的数学模型。运用小波变换对暂态电能质量扰动现象的内在特征进行提取,将扰动电压变化率绝对值、扰动能量变化量作为暂态电能质量扰动的特征向量。根据支持向量机的基本原理,给出一种推广误差上界估计判据,利用此判据进行最优核参数的自动选取,利用支持向量机进行训练和测试。结果表明,优化核参数的支持向量机分类器准确率高,实时性好。  相似文献   

6.
针对多模态过程数据密度不规则性提出的一类基于密度的方法,大多是以欧式距离为基础来比较彼此间的相似性,从而检测过程是否发生故障。然而多模态数据密度在较小范围内变化较大,采用欧式距离很难获得全面的数据信息。本文提出了一种新的基于加权距离选择邻居的策略,该策略首先对距离进行合理的加权,再根据新的加权距离重新选择样本点的邻居,能有效地避免数据信息不全面的问题。在仿真实验中,首先通过比较基于传统的欧式距离和基于本文加权距离选取的邻居,说明本文策略的优越性;进而将该策略与局部离群因子(Local Outlier Factor,LOF)结合用于TE过程,对TE过程的仿真结果表明该策略在应用于基于密度的检测方法上获得了的良好效果。  相似文献   

7.
研究了滚动转子压缩机在线故障检测的方法.以压缩机壳体振动信号作为分析对象,应用小波包分解将信号分解至不同频带上,提取小波包分解系数的统计参数(包括有效值、方差、偏度和峭度)作为支持向量机(SVM)故障分类器的输入特征向量,用于判别正常与故障压缩机.测试结果表明:该方法用于转子式压缩机故障检测是有效的.  相似文献   

8.
为了实现对大量的网络信息的正确分类以便使用户迅速获取所需信息,提出一种新的网页内容分类算法,该算法将遗传算法(GA)与支持向量机(SVM)结合起来,利用遗传算法良好的寻优能力优化SVM的分类性能。在由新闻网页文本构成的数据集上的仿真实验结果表明,GA和SVM融合的算法能够有效提高SVM的分类性能,新算法的分类正确率相比基本的SVM有非常显著的提高。由此证明,提出的基于GA的SVM改进算法是有效的,能够用于对大量网络信息的分类问题中。  相似文献   

9.
基于小波的支持向量机算法研究   总被引:15,自引:2,他引:15  
基于小波对偶框架和支持向量核函数的条件,提出了一种支持向量小波核函数.该核函数利用小波的多尺度插值特性和稀疏变化特性,不仅提高了模型的精度和迭代的收敛速度,而且还适用于信号的局部分析、信噪分离和突变信号的检测,从而在提高支持向量机(SVM)泛化能力的同时,提高了辨识效果和减少了计算量.基于该核函数和正则化理论提出的最小二乘小波支持向量机用于非线性系统辨识,对SINC函数的逼近,该小波核得到的均方根误差不足高斯径向基核的1/12,对logistic混沌序列预测的均方根误差不超过8×10-6,同时实验表明,预测的长度对预测均方根误差没有显著影响,这表明小波核SVM具有更好的泛化能力.  相似文献   

10.
多模态的故障检测作为复杂的实际问题,得到越来越多的重视.围绕多模态的故障检测问题展开相应关键问题研究,首先提出一种基于K均值聚类算法结合聚类有效性指标求解出最佳模态数方法,通过数值仿真和带钢热连轧生产过程数据进行验证;然后利用模糊C均值算法对训练数据进行模态划分,针对不同模态,利用主成分回归方法建立相应的监测模型,实现对故障的有效检测;最后将该故障检测方法应用到带钢热连轧生产过程.仿真结果表明,不仅实现合理模态划分和识别,而且取得良好的检测效果.  相似文献   

11.
对Morlet小波及其变换特性进行了分析 ,利用其良好的时频正则性及复分析特性 ,把一维检测波映射到二维时间尺度表示 (TSR) -Scalogram谱图上。Scalogram承载了介质结构的丰富信息 ,利用这些信息能够实现对介质的全面分析和缺陷识别 ,辅以Morlet小波变换的实部模极大值 ,可以对缺陷进行准确定位。该方法有效地弥补了基于Hilbert变换的复信号分析 (CSA)、短时傅立叶变换 (STFT)及二次时频表示 (TFR)等方法的不足。对水泥土地下连续墙进行的无损检测结果表明 ,基于Morlet小波TSR的检测方法有较好的实用性 ,它为结构无损检测领域提供了一条新的技术路线。为进一步完善前述方法 ,将Morlet小波与Dergauss小波进行优势联合 ,可以避免模极大值线分叉现象 ,有利于提高定量解释精度。  相似文献   

12.
基于交叉验证法优化参数的Morlet小波消噪方法   总被引:2,自引:0,他引:2  
针对机械监测故障信号的非平稳性特点,提出一种基于交叉验证法优化参数的Morlet小波消噪方法。选择与机械冲击振动波形相似的Morlet小波,对Morlet母小波进行改进,增加了波形调整参数。通过交叉验证方法设计了改进Morlet小波的波形参数和变换尺度。对信号进行连续小波变换(CWT),实现对含噪信号的滤波消噪。将该方法应用于齿轮故障检测中,对比2种传统的小波消噪方法,验证该方法能够提取出强噪声背景下的有效信号特征成分,具有较好的滤波消噪效果。  相似文献   

13.
针对下肢肌电信号(EMG)的多运动模式分类问题,提出了一种基于小波支持向量机(WSVM)的多类识别方法.在小波框架理论和SVM核方法的基础上,构造基于二叉树结构的WSVM多类分类器,采用多尺度分析对下肢EMG进行消噪处理和特征提取,将特征向量输入WSVM多类分类器.以水平行走为例对支撑前期、支撑中期、支撑末期、摆动前期和摆动末期等5个细分运动模式进行分类,并与传统的神经网络和高斯核SVM分类器进行比较.实验结果验证了所提方法的有效性.  相似文献   

14.
针对IKONOS影像波段和光谱特点,结合小波函数对非线性信号的良好描述能力和多输出支持向量回归(MSVR)在多维机器学习领域的优势,提出一种基于小波核MSVR的IKONOS影像多分类方法,并以安徽大学新校区的IKONOS影像进行仿真实验.结果表明,提出的多分类算法优于传统的有监督二分类方法和无监督K-Means分类方法,获得较好的分类效果.  相似文献   

15.
小波支持向量机在滚动轴承故障诊断中的应用   总被引:2,自引:0,他引:2  
为提高支持向量机故障分类器的性能,提出了一种小波核函数支持向量机故障分类器.基于平移不变核函数条件,推导证明了Mexican hat小波函数是一种容许核函数.利用正常、滚动体故障以及内、外圈故障4种状态的轴承试验数据,研究了小波支持向量机分类器的性能.与基于RBF核函数的支持向量机的分类结果进行对比表明,小波支持向量机具有更高的分类正确率.  相似文献   

16.
针对基于支持向量机的小波图像编码算法难以实现嵌入式特性问题,在小波域构建一种回归树结构作为回归基本数据集合,同时利用子带内和子带间小波系数的相关性,提出一种线性动态阈值选取方法,以利于逐次逼近并保证回归数据的均衡性,并基于选定的阈值动态选取ε误差参数对小波系数进行多次回归,保证了重要系数被优先编码,使压缩算法具有嵌入式特性,对获得的支持向量及其权重进行自适应算术编码.实验结果表明,在压缩比相近的情况下,重构图像的PSNR(Peak Signal to Noise Ratio)比同类算法提高1~3 dB.  相似文献   

17.
针对Kmeans算法在滚轴故障检测中k值需要人工设定以及初始聚类中心的随机选取问题,提出I-Canopy-Kmeans算法的故障检测方法对其进行优化。该算法在初始聚类中心的随机选取方面,使用“最远最近”的原则,即在获取n个Canopy时,任意两个Canopy中心点之间的距离应该尽可能远,且第n个Canopy中心点应该是其他数据点与前面n-1个中心点最远距离中最小的一个;在阈值选取方面,使用欧氏距离求出所有数据点的均值点,再计算均值点到所有数据点的距离,并用L1和L2分别表示最远距离和最近距离,然后将(L1+L2)/2赋值给阈值T1、(L1+L2)/3赋值给阈值T2。实验结果表明,与传统Kmeans算法相比,I-Canopy-Kmeans算法的各项评价指标均有提高,其中IAR提高最多,达到了40.01%。  相似文献   

18.
针对粒子群优化算法易陷入局部极值,收敛精度不高的缺陷,提出一种基于Morlet小波变异的改进算法。改进算法对组成每代全局极值的各维度实施小波扰动,并将扰动结果作为以一定概率被选中粒子的新位置,充分利用全局极值的优势信息引导粒子快速向最优解靠近,通过小波函数的微调特征帮助粒子跳出局部极值。在12个经典测试函数上的仿真实验结果表明,改进算法的寻优性能较SPSO、CLPSO、DEOPSO、HPSOWM算法有显著提高,适合于求解函数优化问题。  相似文献   

19.
基于小波变换和支持向量机的人脸检测系统   总被引:11,自引:0,他引:11  
研究了基于灰度图像的人脸检测问题,采用小波变换方法提取人脸特征,大大地降低了特征矢量的维数。使用交叉检验方法有效地解决了支持向量机训练时的对数估计问题,所设计的系统可以分别进行离线训练和在线检测,并且具有学习的功能。实验结果表明,该系统具有较高的正检率和较低的虚警率,而且还可以通过再学习进一步提高系统的检测性能。  相似文献   

20.
针对Morlet小波变换结果中的特征提取问题,对连续小波变换得到的小波系数矩阵进行奇异值分解(SVD),分析了所获得的奇异值与Morlet小波变换结果中的特征信号以及噪声的对应关系.基于这种关系,通过选择合适的奇异值进行重构,清晰地提取到Morlet小波分解结果中的有效特征信息;进一步计算得到频率-能量谱,根据峰值位置能够提取冲击特征.将该方法应用于轴承振动信号的故障特征提取,并与其他方法进行了比较.结果表明,文中方法所获得的故障波形非常清晰,在低信噪比时具有较好的故障特征提取效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号