首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superhydrophobic bionic surfaces with hierarchical micro/nano structures were synthesized by decorating single-walled or multiwalled carbon nanotubes (CNTs) on monolayer polystyrene colloidal crystals using a wet chemical self-assembly technique and subsequent surface treatment with a low surface-energy material of fluoroalkylsilane. The bionic surfaces are based on the regularly ordered colloidal crystals, and thus the surfaces have a uniform superhydrophobic property on the whole surface. Moreover, the wettability of the bionic surface can be well controlled by changing the distribution density of CNTs or the size of polystyrene microspheres. The morphologies of the synthesized bionic surfaces bear much resemblance to natural lotus leaves, and the wettability exhibited remarkable superhydrophobicity with a water contact angle of about 165 degrees and a sliding angle of 5 degrees.  相似文献   

2.
In this Article, we addressed a facile method for the fabrication of porous polyimide film with an ordered surface based on the solvent-evaporation-assisted in situ self-assembly of polyamic acid (PAA, precursor of polyimide) and silica microspheres during vacuum-drying of PAA/silica colloid solution. Hydroxyl groups on the surface of silica microspheres have strong hydrogen-bonding with PAA chains, which improve the dispersion of silica microspheres in PAA/DMF solution and further help the self-assembly of PAA/silica colloid solution via solvent evaporation. The approach is simple, neither the preparation of special template nor complex preparation process and precise control over condition is necessary. Furthermore, the method could be employed for mass production of ordered porous polyimide films, and by changing the content and size of silica microspheres, the pore size and porous structure of the porous polyimide films could be tunable. The wettability behavior of the as-prepared porous polyimide films is also studied; the ordered surface topography of the porous polyimide films could change the wettability from hydrophilicity to hydrophobicity.  相似文献   

3.
Broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region were readily fabricated on silicon or quartz substrates by a layer-by-layer (LbL) assembly technique. First, a porous poly(diallyldimethylammonium chloride) (PDDA)/SiO2 nanoparticle multilayer coating with AR property was prepared by LbL deposition of PDDA and 200 nm SiO2 nanoparticles. PDDA was then alternately assembled with sodium silicate on the PDDA/SiO2 nanoparticle coating to prepare a two-level hierarchical surface. Superhydrophobic AR coating with a water contact angle of 154 degrees was finally obtained after chemical vapor deposition of a layer of fluoroalkylsilane on the hierarchical surface. Quartz substrate with the as-fabricated superhydrophobic AR coating has a maximal transmittance above 98% of incidence light in the NIR region, which is increased by five percent compared with bare quartz substrate. Simultaneously, the superhydrophobic property endows the AR coating with water-repellent ability. Such superhydrophobic AR coatings can effectively avoid the disturbance of water vapor on their AR property and are expected to be applicable under humid environments.  相似文献   

4.
Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degree.  相似文献   

5.
A superhydrophobic surface with maximum static water contact angle of 156° and sliding angle of 3.5° was fabricated by modifying the silica coated multiwalled carbon nanotube composites (SiO2/MWCNTs) using a silane coupling agent vinyltriethoxysilane. The structures of SiO2/MWCNTs and superhydrophobic surface were investigated by infrared spectrometer and transmission electron microscopy. The results indicated that silica had been successfully grafted onto MWCNTs and the SiO2/MWCNTs had been chemical modified by vinyl triethoxy successfully. The morphology of our prepared superhydrophobic surface, investigated by scanning electron microscopy, showed a characteristic rough structure. The effects of pH value and exposure time on the stability of the superhydrophobic surface were also investigated. The superhydrophobic film shows reliable acid and alkali resistance and aging resistance, indicating that it will have a wide range of applications.  相似文献   

6.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

7.
A simple technique was developed for the fabrication of a superhydrophobic surface on the aluminum alloy sheets. Different hierarchical structures(Ag, Co, Ni and Zn) were formed on the aluminum surface by the galvanic replacement reactions. After the chemical modification of them with fluorination, the wettability of the surfaces was changed from superhydrophilicity to superhydrophobicity. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and water contact angle measurement were performed to characterize the morphological characteristic, chemical composition and superhydrophobicity of the surfaces. The as-prepared superhydrophobic surfaces showed a water contact angle as high as ca.160° and sliding angle as low as ca.3°. We hope the method to produce superhydrophobic surface can be used in many fields.  相似文献   

8.
A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.  相似文献   

9.
A superhydrophobic ZnO thin film was fabricated by the Au-catalyzed chemical vapor deposition method. The surface of the film exhibits hierarchical structure with nanostructures on sub-microstructures. The water contact angle (CA) was 164.3 degrees, turning into a superhydrophilic one (CA < 5 degrees) after UV illumination, which can be recovered through being placed in the dark or being heated. The film was attached tightly to the substrate, showing good stability and durability. The surface structures were characterized by scanning electron microscopy and atomic force microscopy.  相似文献   

10.
In this paper, silica microspheres were used as template to prepare porous fluorinated polyimide (FPI) thin films from polyamic acid (PAA, precursor of FPI) and silica colloid solution. The strong hydrogen-bonding interaction between silica microspheres and PAA chains have improved the dispersion of silica microspheres in N,N-Dimethylformamide (DMF) solution, resulting in the high weight content of silica template in PAA/silica colloid solution, and thus giving rise to the formation of porous FPI films with maximum porosity of 35%. The interior microstructures of the resultant porous FPI thin films were investigated. It is found that the porous FPI thin films have interconnected “ink-bottle-type” porous structure, and the pore size, porosity could be precisely controlled by the diameter and weight content of silica microspheres, respectively. Although both the tensile strength and young modules declined with the increasing porosity, the high level void of the porous FPI films endowed the FPI ultralow dielectric constant of 1.84 when the porosity increased to 35%. Furthermore, the mechanical and dielectric properties of the porous FPI films were closely related to the microstructures and porosity, indicating the desired properties could be controlled to meet the application in the microelectronics.  相似文献   

11.
Biomimetic superhydrophobic and highly oleophobic cotton textiles   总被引:2,自引:0,他引:2  
We report a biomimetic procedure to prepare superhydrophobic cotton textiles. By in situ introducing silica particles to cotton fibers to generate a dual-size surface roughness, followed by hydrophobization with polydimethylsiloxane (PDMS), normally hydrophilic cotton has been easily turned superhydrophobic, which exhibits a static water contact angle of 155 degrees for a 10 microL droplet. The roll-off angle of water droplets depends on the droplet volume, ranging from 7 degrees for a droplet of 50 microL to 20 degrees for a 7 microL droplet. When a perfluoroalkyl chain is introduced to the silica particle surface, the superhydrophobic textile also becomes highly oleophobic, as demonstrated by a static contact angle of 140 degrees and a roll-off angle of 24 degrees for a 15 microL sunflower oil droplet.  相似文献   

12.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

13.
Fluoroalkyl end‐capped acrylic acid, N,N‐dimethylacrylamide, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide and vinyltrimethoxysilane oligomers reacted with polyamic acid possessing trimethoxysilyl groups under alkaline conditions to yield the corresponding fluoroalkyl end‐capped oligomers/polyamic acid/silica nanocomposites. These isolated fluorinated composite powders were found to afford nanometer size‐controlled fine particles with a good dispersibility and stability in water and traditional organic solvents. We succeeded in preparing new fluoroalkyl end‐capped oligomers/polyimide/silica nanocomposites by the imidization of fluorinated polyamic acid silica nanocomposites through the stepwise heating at 110 and 270°C under air atmosphere conditions. These fluorinated polyimide/silica nanocomposites thus obtained were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleo‐phobic characteristics imparted by fluoroalkyl groups in the composites on their surface. In addition, the surface morphology of the modified glass treated with these fluorinated nanocomposites were analyzed by using FE‐SEM and DFM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes were investigated and compared with those of linear‐type polyimide–silica hybrid membranes with similar chemical structures. Hyperbranched polyamic acid, as a precursor, was prepared by polycondensation of a triamine, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA). 6FDA‐TAPOB hyperbranched polyimide–silica hybrids were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) by sol–gel reaction. 5% weight‐loss temperature of the 6FDA‐TAPOB hyperbranched polyimide–silica hybrids determined by TG‐DTA measurement considerably increased with increasing silica content, indicating effective crosslinking at polymer–silica interface. CO2, O2, N2, and CH4 permeability coefficients of the 6FDA‐based polyimide–silica hybrids increased with increasing silica content. In addition, CO2/CH4 selectivity of the 6FDA‐TAPOB–silica hybrids remarkably increased with increasing silica content. From 129Xe NMR analysis, characteristic distribution and interconnectivity of cavities created around polymer–silica interface were suggested in the 6FDA‐TAPOB–silica hybrids. It was indicated that size‐selective separation ability is effectively brought by the incorporation of silica for the 6FDA‐TAPOB hyperbranched polyimide–silica hybrid membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 291–298, 2006  相似文献   

15.
A method for the preparation of inorganic superhydrophobic silica coatings using sol-gel processing with tetramethoxysilane and isobutyltrimethoxysilane as precursors is described. Incorporation of isobutyltrimethoxysilane into silica layers resulted in the existence of hydrophobic isobutyl surface groups, thereby generating surface hydrophobicity. When combined with the surface roughness that resulted from sol-gel processing, a superhydrophobic surface was achieved. This surface showed improved UV and thermal stability compared to superhydrophobic surfaces generated from polybutadiene by plasma etching. Under prolonged UV tests (ASTM D 4329), these surfaces gradually lost superhydrophobic character. However, when the as-prepared superhydrophobic surface was treated at 500 degrees C to remove the organic moieties and covered with a fluoroalkyl layer by a perfluorooctylsilane treatment, the surface regained superhydrophobicity. The UV and thermal stability of these surfaces was maintained upon exposure to temperatures up to 400 degrees C and UV testing times of 5500 h. Contact angles remained >160 degrees with contact angle hysteresis approximately 2 degrees.  相似文献   

16.
The various morphology and structure microspheres were fabricated via one‐step single‐solvent electrospraying of hydrophilic and hydrophobic block modified copolymer of polycaprolactone (PCL). A honeycomb‐like hierarchical structure microspheres of PCL‐b‐PTFOA(4h) and abundant nanometer pores of PCL‐b‐PEG400 microspheres were obtained due to the solvent evaporation, thermally and polymer diffusion‐induced phase separation effect. Furthermore, a superhydrophobic coatings and robust superhydrophobic‐coated cotton woven fabric surfaces were prepared by using PCL‐b‐PTFOA(4h) microspheres with hierarchical structure and low surface energy. The contact angle (CA) and sliding angle (SA) of PCL‐b‐PTFOA(4h) microspheres‐coated cotton woven fabric surfaces reached 164.4 ± 5.5° and 6.8 ± 0.5°, respectively, which allows for self‐cleaning. The self‐cleaning test demonstrated that the coated superhydrophobic surface could shed aqueous dyes and dust without any trace. The superhydrophobic‐coated fabric shows good soaping fastness against mechanical abrasion without significant reduction of CA. This electrospraying coating of block copolymers can provide a simple, facile, and promising technique for producing multifunctional textiles.  相似文献   

17.
孙巍  周雨辰  陈忠仁 《高分子学报》2012,(12):1459-1464
利用粒子辅助水滴模板法的实施获得规则蜂窝状图案化多孔结构模板,并进一步利用聚二甲基硅氧烷(PDMS)复制转移技术获得表面具有微米尺寸蜂窝状突起阵列的反向图案化结构.以这种图案化突起结构作为微米尺寸所提供的微米级粗糙度为基础,设计了2种的简单的二次纳米结构的引入过程,最终实现了微米级阵列和纳米级粗糙度的复合.第一种方法借助银镜反应来实现纳米银结构的化学沉积,最终在PDMS阵列表面获得了致密的纳米银颗粒沉积层,并成功获得了表面接触角达166度的超疏水性质.第二种方法利用了聚电解质/二氧化硅粒子层层静电自组装的方法引入纳米结构,结果在仅仅进行了2个组装循环的条件下即可获得超疏水性质的表面复合结构.通过简单的实验设计试图提供一种基于水滴模板法的微纳复合超疏水结构的普适性制备方法.  相似文献   

18.
Polyethylene films grow on a flat silica surface modified by the bis(imino)pyridyl iron(II) catalyst during ethylene polymerization in toluene solvent. The resulting films show superhydrophobic properties. Advancing water contact angle as high as 169 degrees and sliding angles as low as 2 degrees are obtained on these films. SEM images reveal special surface structures of these films containing micrometer-sized islands, submicrometer particles on the islands, and stress nanofibers between the islands, which render superhydrophobicity to the polyethylene surfaces. After the submicrometer particles and stress nanofibers are removed by annealing, the superhydrophobic properties of the polymer films disappear.  相似文献   

19.
In this work, superhydrophobic surfaces were derived from binary colloidal assemblies. CaCO(3)-loaded hydrogel spheres and silica or polystyrene ones were consecutively dip-coated on silicon wafers. The former assemblies were recruited as templates for the latter self-assembly. Due to the hydrophilicity difference between silicon wafers and CaCO(3)-loaded hydrogel spheres, the region selective localization of silica or polystyrene spheres leads to irregular binary structures with a hierarchical roughness. The subsequent modification with low surface energy molecules yields a superhydrophobic surface. The heating treatment may largely enhance the mechanical stability of the resulting binary structures, which allows regeneration of the surface superhydrophobicity, providing a good durability in practice.  相似文献   

20.
A superhydrophobic silica film has been fabricated by a facile method, which combines the co-sedimentation of dual-sized polystyrene (PS) spheres and the infiltration of a silica sol. The scanning electron microscopy (SEM) observations indicate that the as-prepared silica surface has a hierarchical micro/nano-structure. The micrometer-sized hollow silica particle with nanometer-sized holes on its surface was created by removing the organic polymer at high temperature. After chemically modified by a layer of dodecafluoroheptyl-methyl-dimethoxysilane (DFMS), the silica film has a water contact angle up to 156.4°, showing excellent superhydrophobic property. The present method may enhance widespread application of superhydrophobic film because of its simplicity and cheapness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号