首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
分别以甲苯-2,4-二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)为单体,通过原位聚合法制备了离子液体@聚脲(PU)微胶囊,并与环氧树脂共混制得环氧树脂复合材料.利用扫描电子显微镜分析了微胶囊及复合材料的表面形貌,通过电子万能试验机和摩擦磨损试验机探究了微胶囊改性复合材料在不同情况下的力学性能和摩擦学性能,用傅里叶变换红外光谱对微胶囊进行表征.分析结果表明,以IPDI为单体合成的微胶囊摩擦学性能更加优异,并且随着微胶囊用量的增加,复合材料的摩擦学性能有明显提高,当微胶囊添加质量分数为20%时,含有微胶囊的复合材料具有较低的滑动摩擦系数并且摩擦面较光滑,这是由于在实验过程中,随着微胶囊壁材的破损,芯材离子液体被释放,形成了一层致密的润滑膜.  相似文献   

2.
The addition of fillers can significantly change the mechanical characteristics of a material. In this paper, a general, mechanistic model is established to determine the moduli, relaxation moduli, break strengths, and break strains for polymer films containing liquid and solid micro fillers. Based on rigorous continuum mechanics principles, this model considers the filler/filler interactions, incorporates the nonlinear synergistic effects of fillers, and provides accurate predictions in comparison with experimental data. The analytical model developed provides information that is not available or extremely difficult to obtain experimentally. The model can be applied to determine the filler/matrix adhesion and filler modulus using measured modulus of a filled polymer film (a filled polymer is a polymer containing fillers). It is found that the compression moduli of polymer films containing liquid fillers differ significantly from the tension moduli, especially when the volume fraction of the filler is high. The difference in compression and tension Young's moduli normalized by the tension Young's modulus is as high as 35%. The relative error in maximum pressure calculation during Hertzian contact caused by using the tension moduli is as high as 48%. The relaxation modulus of a filled polymer film is determined through inverse Laplace transforms of its composite modulus in the s‐space. For a filled polymer film containing liquid phase fillers, a closed form solution for its relaxation modulus has been obtained. It is found that the composite relaxation modulus of the filled polymer is proportional to the relaxation modulus of the matrix polymer multiplied by a factor related to the volume fraction of the liquid filler. The break strength of the filled polymer is found to be proportional to the break strength of the polymer matrix material multiplied by a power function of the modulus ratio of filled polymer to polymer matrix, R. The break strain of the filled polymer is proportional to the break strain of the polymer matrix multiplied by a power function of 1/R. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 155–172, 1999  相似文献   

3.
含润滑油微胶囊复合镀铜机理和镀层性能   总被引:1,自引:0,他引:1  
采用水相分离法制备了以润滑油为囊心、聚乙烯醇为囊壁的微胶囊,并考察了含这种微胶囊复合镀铜层的性能.通过对这种复合镀层微观形貌的观察及耐腐蚀性、耐磨性、动摩擦系数的测定,结果表明由于复合镀铜层中含有润滑油微胶囊,其耐腐蚀性和耐磨性能都得到很大提高,并分析了这种微胶囊复合电沉积的机理和镀层的润滑、修复作用.  相似文献   

4.
《先进技术聚合物》2018,29(5):1487-1496
High‐performance polymer‐based frictional materials have become increasingly important to improve the mechanical output properties of ultrasonic motors. This study discussed the friction and wear behavior of 2 dominating frictional materials of polymer composites for ultrasonic motors, polyimide (PI), and polytetrafluoroethylene (PTFE) filled by aramid fibers (AF) and molybdenum disulfide (MoS2). To explore the wear mechanisms, the tribo‐pair contact stress was theoretically characterized, and the interface temperature rise was numerically predicted. The predictions showed that the flash temperature on asperity tips could reach the glass transition temperature of the polymer materials. The experimental results indicated that the contact stress and sliding speed have a small effect on the friction of the PI composite but influence considerably the friction of the PTFE composite. A higher contact stress brings about a higher specific wear rate, but a higher sliding speed reduces the wear rate. Compared with AF/MoS2/PTFE, the AF/MoS2/PI has much better tribological performance under high loads and speeds.  相似文献   

5.
We report the facile preparation of the conductive polymer composites containing the mixed‐valence tetrathiafulvalene (TTF) nanofibers and their applications as all‐organic transparent conductive materials. TTF can be used as a nanofiller for transforming conventional polymers to conductive materials. Self‐assemble nanofibers of the neutral and radical cation of TTF can be formed in the polymer solutions during the film deposition, and the resulting composite films with several micron thickness can serve as the conductive material with high transparency. Several kinds of conventional polymers, such as polystyrene, poly(methyl methacrylate) (PMMA), and poly(vinylpyrrolidone), can be used as a polymer matrix of the composites. The conductivities of the PMMA film containing 35 mol % of the mixed‐valence TTF and the PEDOT–PSS film showed similar values (2.8 × 10–2 and 5.4 × 10–1 S/cm, respectively). In contrast, the normalized transmittance of the PMMA film by 1‐μm thickness greatly increased (96%/μm) when compared with that of the PEDOT–PSS film (10%/μm). In addition, the degradation of the conductivity of the nanofibers by heating and aging was effectively suppressed in the composite samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6441–6450, 2009  相似文献   

6.
三聚氰胺-甲醛树脂包裹环氧树脂微胶囊的制备及表征   总被引:4,自引:0,他引:4  
针对环氧树脂基材料的自修复,选取四氢邻苯二甲酸二缩水甘油酯作为芯材,采用三聚氰胺-甲醛树脂为壁材,对其进行微胶囊化包裹.结果表明,制得的具有单囊结构的环氧树脂微胶囊,胶囊粒径较小(约6.7μm)、囊壁较薄(约0.2μm)、芯含量较高(83.2 wt%),囊壁内、外表面光滑致密,胶囊具有良好的密闭性和耐热性;在微胶囊化过程中,三聚氰胺-甲醛树脂的缩聚反应动力学起关键作用,芯材没有参与囊壁形成的交联反应;包裹后的芯材活性保持不变,胶囊被复合到材料过程中囊芯活性也保持不变;胶囊的强度较高,能承受与基体材料复合过程中的外力作用,且与基体材料间粘结良好,在裂纹形成过程中能够随基体同时开裂.  相似文献   

7.
Liquid crystal polymer (LCP) composites filled with sepiolite and glass microcapsules were prepared by melt compounding. The composites were extruded using a twin-screw extruder and injection-molded. The objective of this study is to check a possibility of producing a polymeric composite with a low dielectric constant. Physical characteristics of the composites, such as morphological, rheological, mechanical, and electrical properties were analyzed. In particular, the glass microcapsule-reinforced LCP composites showed a significant improvement in lowering the dielectric constant due to its high air content. Additionally, sepiolite could act as an effective filler to improve the mechanical properties of the composites.  相似文献   

8.
利用磷酸化改性木质素/二氧化硅复合纳米颗粒(PAL/SiO2)作为壁材包埋活性组分异佛尔酮二异氰酸酯(IPDI)制备微胶囊(PAL/SiO2-IPDI). 通过加入少量反应活性更高的聚合多甲基多二异氰酸酯(PMDI), 与水反应形成聚脲, 以增加微胶囊的壁厚. 采用光学显微镜、 扫描电子显微镜(SEM)和激光粒度分析仪(DLS)研究了PAL/SiO2复合纳米粒子掺杂量, 水油比和剪切速率对微胶囊表面形貌、 粒径和壁厚的影响. 结果表明, 所制备的微胶囊呈现规整球形, 壁厚为2.36~3.50 μm, 平均粒径为40.3~201.5 μm. IPDI作为芯材包埋在微胶囊中, 芯材含量约为82.8%. 将制备的PAL/SiO2-IPDI微胶囊添加到环氧树脂中得到自愈合环氧树脂涂层. 其在高盐浓度溶液中的抗侵蚀测试结果显示, 添加质量分数4%的PAL/SiO2-IPDI微胶囊的环氧树脂涂层在划破后能够快速愈合, 显著降低基底的腐蚀电流和腐蚀速率. 纳米压痕实验表明, 环氧涂层的硬度为249.99 MPa, 而添加PAL/SiO2-IPDI微胶囊后硬度增加到302.98 MPa, 弹性模量也有提高.  相似文献   

9.
In recent past years, utilization of synthetic materials has become a matter of immense concern due to increasing environmental awareness in terms of safety, sustainability and maintaining ecological balance. A substantial amount of work has been carried out on various aspects of plant based natural fiber reinforced thermoset polymer composite materials due to their numerous inherent properties like high specific strength, low cost and degradability. Current issues and challenges associated with mechanical and tribological properties of only plant based natural fiber reinforced thermoset composites have been highlighted in the present study. Various factors influencing mechanical and tribological characteristics have been discussed keeping the focus on plant fiber reinforced thermoset composites. A detailed discussion on mechanical (tensile, compressive, flexural, impact strength) and tribological properties (friction and specific wear rate) have been reported. Interfacial adhesion was found to be a dominating factor with respect to mechanical and tribological properties. Wear and frictional characteristics of plant fiber based thermoset composites can be controlled using suitable fillers and reinforcement orientation. A discussion on interfacial adhesion and its effect on composite performance have also been included.  相似文献   

10.
All-organic composites are widely used in energy storage application due to the high breakdown strength performance, but the improvement of energy storage was limited by the relatively low dielectric constant. Therefore, to satisfy the high demands of dielectric materials, energy storage properties of polymer composites should be further enhanced. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA), which are known as high dielectric ferroelectric material and linearly high energy storage efficiency material respectively, are composited through double layer (DL) casting method for the first time. The properties of DL structured composite film is contrasted with solution blending structure especially in energy storage efficiency, and the results demonstrate that DL structure design can make great use of advantages of two materials and also can avoid the influence of phase separation between P(VDF-CTFE) and PUA efficiently. Moreover, high breakdown strength (6180 kV/cm) and high energy storage efficiency (77%) of DL composites can be realized simultaneously by incorporating PUA as an insulating layer, and the mechanism is discussed in detail. This work provides an effective route to improve the energy storage properties of polymer dielectric materials and shows great application potential.  相似文献   

11.
利用零维纳米粒子与二维纳米片在聚合物基体中的协同分散,构筑纳米粒子/二维纳米片/聚酰亚胺(PI)三元复合体系,系统研究了零维-二维组合纳米填料对复合材料介电常数、击穿强度、储能密度以及机械性能的影响.结果表明:采用氟碳表面活性剂插层修饰可以将水滑石剥离为水滑石二维纳米片(HT),在此纳米片溶液中分散钛酸钡纳米粒子(BT),并进行聚酰亚胺的原位聚合.在聚合物溶液形成薄膜的过程中,二维纳米片和纳米粒子的协同作用抑制了各自的团聚,改善了2种纳米填料在聚合物薄膜中的分散状况.在所制备的PI/BT/HT复合薄膜中,HT有利于改善BT在PI基体中的均匀分散,提高了薄膜的击穿强度,进而提升了复合薄膜的储能密度.与仅加入20%BT相比,在聚酰亚胺中同时加入2种填料20%BT和1%HT时,击穿强度达到354.4 kV/mm,储能密度达到2.58 J/cm3,分别提高了12.4%和14.6%.因此,在纳米粒子/聚合物复合材料中增加少量二维纳米片就可以显著改善其性能,这种方法有望在更多纳米复合功能材料领域得到应用.  相似文献   

12.
In this Communication, we show that nanometer scale control of semiconducting polymer chain conformation is possible using host/guest chemistry in highly ordered and macroscopically oriented thin films of mesoporous silica. This control leads to a thin film composite material that is optically transparent, densely filled with polymer, and has highly polarized optical properties. Calculations of absorption and emission anisotropies further indicate full incorporation of the polymer into the nanoscale pore spaces. Such materials could serve as a useful tool for further investigations of polymer photophysics, as well as for device applications.  相似文献   

13.
Composite materials, made by replacing traditional materials, are used because of their capability to produce tailor-made, desirable properties such as high tensile strength, low thermal expansion, and high strength to weight ratio. The need for the development of new materials is essential and growing day by day. The natural sisal/general polymer (GP) reinforced with nanoclay composites has become more attractive due to its high specific strength, light weight, and biodegradability. In this study, sisal–nanoclay composite is developed and its mechanical properties such as tensile strength, flexural strength, and impact strength are evaluated. The interfacial properties, internal cracks, and internal structure of the fractured surface are evaluated using scanning electron microscope. The thermal disintegration of composites are evaluated by thermogravimetric analysis. The results indicate that the incorporation of nanoclay in sisal fiber/GP can improve its properties and can be used as a substitute material for glass fiber-reinforced polymer composites.  相似文献   

14.
The influence of biaxial orientation on the mechanical characteristics of polypropylene filled with ZnO nanoparticles was studied. The experimental method of biaxial orientation of composite was developed. The film of filled composite was compressed between two thick disks made of lead/tin alloy; the deformation was determined by alloy. The nanocomposite material contained particles characterized by size ≤30 nm. The increase in content of particles led to the significant increase in yield point; it was explained by crystallization of polypropylene on filler particles. The nonoriented composite exhibited brittle rupture at the degree of filling equal to 20 vol %. The rupture took place owing to the emergence of a craze-like crack; polymer flow was localized within the zone characterized by width about 10 μm. Preliminary orientation at twofold degree of deformation already allowed preserving plasticity of composite containing up to 30 vol % of particles.  相似文献   

15.
The application of microencapsulated liquid gasifiable fire-extinguishing agents as reactive filling compounds for fire-extinguishing composites is considered. A new process for microencapsulation of environmentally friendly fire-extinguishing agents possessing enhanced stability is designed. Novel composite materials are produced with these agents. The thermal-destruction processes of microcapsules containing liquid gasifiable fire-extinguishing agents of different compositions are considered. Laboratory and bench-mark firing tests of the materials are performed.  相似文献   

16.
The autonomic self-healing materials based on microcapsules have made major advancements for the repairing of microcracks in polymers and polymer composite systems. Self-healing encapsulated materials have the inborn ability to heal polymeric composites after being damaged by chemical and mechanical progressions. These intelligent micro-encapsulated self-healing materials possess great capabilities for recovering the mechanical as well aesthetic properties and barrier properties of the polymeric structures. Based on real world observations and experimental data, it is believed that microcracks and microcracking in polymeric materials can result because of many chemical and physical routes and is one of the foremost critical issues for polymeric materials. Especially in polymeric coatings, these microcracks can lead towards disastrous failure, and conventional healing systems like patching and welding cannot be used to repair microcracks at such a micro-level. Self-healing materials, especially, capsule based self-healing materials is a new field sought as an alternative to the conventional repairing techniques, requiring no manual intrusion and uncovering. This review covers the basic and major aspects of the microencapsulated self-healing approach like the effect of synthesis parameters on the size of microcapsules, healing efficiency determination, and the potential of the existing developed microencapsulated agents.  相似文献   

17.
Long-term predictions of material properties such as stiffness and creep resistance are important in many engineering applications and require high reliability and accuracy. This is especially true for polymer materials and their composites as their viscoelastic nature results in time-dependent material behaviour and any measurement uncertainties or errors amplify in long-term predictions. To measure this behaviour at smallest loadings, Dynamic Mechanical Analysis (DMA) is frequently declared as an ideal method. However, the measurement accuracy and repeatability of this method is strongly influenced by (i) the testing fixture and corresponding loading mode, (ii) the sample preparation and (iii) the plotting scale to interpret the test results. In this study, relevant experimental parameters were found for DMA and a proper procedure was designed, which was then applied to measure the viscoelastic behaviour of a highly temperature and creep resistant thermoplastic polymer (polyethersulfone) and of a highly graphite filled polypropylene composite. In combination with finite element simulations and in-situ strain measurements by digital image correlation (DIC), the main influences on measurement accuracy of three-point-bending DMA were identified and subsequently used to determine measurement guidelines. Using these guidelines, DMA measurements allow quantitative determination of the viscoelastic response for rigid polymer and composite materials.  相似文献   

18.
The present article deals with current trends in spinel based modified polymer composite materials for applications in the field of electromagnetic shielding. The interaction between the various spinel based materials and polymers is an emerging field of studies among various researchers. The thermal stability, electrical conductivity, the bonding between the metal ferrites and the polymer plays an important role in the interaction of electromagnetic radiation. These properties also effect the mechanism of the EM waves for the shielding applications. Considering these all properties, polyaniline appears to be an suitable polymer for electromagnetic shielding applications. Polyaniline composites not only reinforced the properties of spinel materials but also enhanced the dielectric properties of the composite material. When carbon based materials such as graphene, graphene oxide and CNT was added along with spinel material in polyaniline based composite, they accelerate the electrical properties and enhances the shielding applications. In this paper the various synthesis methods, fabrication methods of polyaniline, and the properties of polyaniline based composites have been discussed. In addition, the various salient features and futuristic challenges of polyaniline based composite materials for EMI shielding applications were attempted to make a well equipped material for radar absorption.  相似文献   

19.
To understand the effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polymer composites, polyimide/Al2O3 composites were irradiated with AO in a ground‐based simulation facility. The structural changes were characterized by X‐ray photoelectron spectroscopy and attenuated total‐reflection FTIR, whereas the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide molecular chains, which increased the O concentration and decreased the C concentration in the composite surfaces. The destruction action of AO changed the surface chemical structure and morphology of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3 filled polyimides. In terms of the tribological properties, appropriate content of Al2O3 might be favorable for the improvement of tribological properties in AO environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Mechanical characteristics of polymerization filled composite materials based on ultrahigh-molecular-weight polyethylene and fine aluminum particles are studied. The prepared composites preserve their ability for high plastic deformations even when the volume filler content is φ = 0.57. For the tensile drawing of the composite material with randomly distributed particles, an equation describing the dependence of breaking stress on the volume filler content is derived. For the model of the composite with regularly ordered particles, the Nielsen equation is the approximation of the equation proposed in this work for a material with randomly distributed particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号