首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetotransport property for a monolayer graphene with two turnable magnetic barriers has been investigated by the transfer-matrix method. We show that the parameters of barrier height, width, and interval between two barriers affect the electron wave decaying length, which determine the conductance with parallel or antiparallel magnetization configuration, and consequently the tunneling magnetoresistance (TMR) for the system. Interestingly, a graphene attached by two barriers with different heights can produce a resonant TMR peak at low energy region one order of magnitude larger than that for the system with two same height barriers because that the asymmetry of magnetic barriers block the electron transmission in the case of antiparallel magnetization configuration. The results obtained here may be useful in understanding of electron tunneling in graphene and in designing of graphene-based nanodevices.  相似文献   

2.
汪萨克  田宏玉  杨永宏  汪军 《中国物理 B》2014,23(1):17203-017203
We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is shown that the silicene could be a spin and valley half metal under appropriate parameters when the spin–orbit interaction is considered; further, the filtered spin and valley could be controlled by modulating the staggered potential or magnetization. It is also found that in the spin-valve structure of silicene, not only can the antiparallel magnetization configuration significantly reduce the valve-structure conductance, but the reversing staggered electric potential can cause a high-performance magnetoresistance due to the spin and valley blocking effects. Our findings show that the silicene might be an ideal basis for the spin and valley filter analyzer devices.  相似文献   

3.
《Physics letters. A》2020,384(26):126641
We investigate the tunnel magnetoresistance (TMR) in an armchair phosphorene nanoribbon modulated by two ferromagnetic stripes. It is shown that large TMR can be achieved by applying a perpendicularly electric field to the phosphorene plane. We find that the TMR can be adjusted by an external gate voltage, and the TMR oscillates periodically from positive to negative by a slight change of the gate voltage. This characteristic can be observed in a wide region of exchange splitting values. Our findings open the way to design phosphorene-based spintronics nanodevices, and it may contribute to the future low power spintronic applications.  相似文献   

4.
We study tunnel magnetoresistance (TMR) through grain boundaries where tunneling electrons interact with localized spins via ferromagnetic exchange interaction. It is shown that spin–flip tunneling due to the exchange interaction gives rise to appreciable effects on TMR, and that TMR increases almost linearly with increasing magnetic field.  相似文献   

5.
We adopt the group velocity approach to the issue of tunneling time in two configurations of magnetic barrier structures, which are arranged with identical or unidentical building blocks. The effects of an external electric field are also taken into account. The tunneling time in magnetic barrier structures is found to be strongly dependent on the magnetic configuration, the applied bias, the incident energy as well as the longitudinal wave vector. The results indicate that for electrons with equal energy but different incident angles, the tunneling processes are significantly separated in time within the same magnetic barrier structure. In the configuration arranged with unidentical building blocks, there exists obvious asymmetry of tunneling time in two opposite tunneling directions. Such a discrepancy of the tunneling time varies distinctly with the longitudinal wave vector and the applied bias. Received 4 March 2002 / Received in final form 22 May 2002 Published online 17 September 2002  相似文献   

6.
The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.  相似文献   

7.
《Physics letters. A》2020,384(24):126607
We study spin-dependent electron transport properties of a thermally driven interacting quantum dot. When an external magnetic field is applied to the quantum dot, the effective transmissions of spin-up and spin-down electrons are separated from each other and have a perfect mirror symmetry with respect to the incident energy at a certain gate voltage. A pure spin current can be induced in the system and modulated by a magnetic field. Under certain magnetic field strengths, a larger pure spin current can be obtained at gate voltages with the values in a range, not just at a specific voltage. These results indicate that the system can be worked as a pure spin current generator.  相似文献   

8.
The tunneling conductance and tunneling magnetoresistance (TMR) are investigated in ferromagnet/insulator/ferromagnet/insulator/d-wave superconductor (FM/I/FM/I/d-wave SC) structures by applying an extended Blonder-Tinkham-Klapwijk (BTK) approach. We study the effects of the exchange splitting in the FM, the magnetic impurity scattering in the thin insulator interface of FM/I/FM, and noncollinear magnetizations in adjacent magnetic layers on the TMR. It is shown (1) that the tunneling conductance and TMR exhibit amplitude-varying oscillating behavior with exchange splitting, (2) that with the presence of spin-flip scattering in insulator interface of FM/I/FM, the TMR can be dramatically enhanced, and (3) that the TMR depends strongly on the angle between the magnetization of two FMs.  相似文献   

9.
J. Mathon 《Phase Transitions》2013,86(4-5):491-500
Rigorous theory of the tunneling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches , 65% in the tunneling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunneling current is negative in the metallic regime but becomes positive P , 35% in the tunneling regime. Calculation of the tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of , 20 atomic planes and the spin polarization of the tunneling current is positive for all MgO thicknesses. It is also found that spin-dependent tunneling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the o point ( k =0) even for MgO thicknesses as large as , 20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains nonzero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunneling from a Cu interlayer, i.e. non-zero TMR. Numerical modeling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the nonmagnetic layer is lost and with it the TMR.  相似文献   

10.
We measured inelastic electron tunneling (IET) spectra and conductance for MgO tunneling magnetoresistance (TMR) films to obtain information on the ferromagnetic/barrier layer interface. The IET spectra showed the difference between amorphous and crystalline structures in the barrier. In the magnetic tunnel junction (MTJ) with a crystalline barrier the IET spectra indicated an Mg-O phonon peak at a low bias voltage by measurement with a parallel magnetization configuration. On the other hand, no peak was observed in the MTJ with an amorphous barrier.  相似文献   

11.
We investigate the electronic transport in a silicene-based ferromagnetic metal/ferromagnetic insulator/ferromagnetic metal tunnel junction. The results show that the valley and spin transports are strongly dependent on local application of a vertical electric field and effective magnetization configurations of the ferromagnetic layers. In particular, it is found that the fully valley and spin polarized currents can be realized by tuning the external electric field. Furthermore, we also demonstrate that the tunneling magnetoresistance ratio in such a full magnetic junction of silicene is very sensitive to the electric field modulation.  相似文献   

12.
Theoretical studies on spin-dependent transport in magnetic tunnel heterostructures consisting of two diluted magnetic semiconductors (DMS) separated by a nonmagnetic semiconductor (NMS) barrier, are carried in the limit of coherent regime by including the effect of angular dependence of the magnetizations in DMS. Based on parabolic valence band effective mass approximation and spontaneous magnetization of DMS electrodes, we obtain an analytical expression of angular dependence of transmission for DMS/NMS/DMS junctions. We also examine the dependence of spin polarization and tunneling magnetoresistance (TMR) on barrier thickness, temperature, applied voltage and the relative angle between the magnetizations of two DMS layers in GaMnAs/GaAs/GaMnAs heterostructures. We discuss the theoretical interpretation of this variation. Our results show that TMR of more than 65% are obtained at zero temperature, when one GaAs monolayer is used as a tunnel barrier. It is also shown that the TMR decreases rapidly with increasing barrier width and applied voltage; however at high voltages and low thicknesses, the TMR first increases and then decreases. Our calculations explain the main features of the recent experimental observations and the application of the predicted results may prove useful in designing nano spin-valve devices.  相似文献   

13.
In a joint experimental and theoretical study, we investigate the bias-voltage dependence of the tunnel magnetoresistance (TMR) through a vacuum barrier. The TMR observed by spin-polarized scanning tunneling microscopy between an amorphous magnetic tip and a Co(0001) sample is almost independent of the bias voltage at large tip-sample separations. Whereas qualitative understanding is achieved by means of the electronic surface structure of Co, the experimental findings are compared quantitatively with bias-voltage dependent first-principles calculations for ballistic tunneling. At small tip-sample separations, a pronounced minimum in the experimental TMR was found at +200 mV bias.  相似文献   

14.
The GMR effect in magnetic–electric barrier nanostructure, which can be realized experimentally by depositing two parallel metallic ferromagnetic strips with an applied voltage on the top of heterostructure, is investigated theoretically. It is shown that a considerable GMR effect can be achieved in such nanosystems due to the significant transmission difference for electrons tunneling through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio is strongly dependent upon the applied voltage to metallic ferromagnetic strips in nanosystems, thus may leading to voltage-tunable GMR devices.  相似文献   

15.
Bo Chang 《Physics letters. A》2010,374(29):2985-2938
We report a theoretical analysis of electron transport through a quantum dot with an embedded biaxial single-molecule magnet (SMM) based on mapping of the many-body interaction-system onto a one-body problem by means of the non-equilibrium Green function technique. It is found that the conducting current exhibits a stepwise behavior and the nonlinear differential conductance displays additional peaks with variation of the sweeping speed and the magnitude of magnetic field. This observation can be interpreted by the interaction of electron-spin with the SMM and the quantum tunneling of magnetization. The inelastic conductance and the corresponding tunneling processes are investigated with normal as well as ferromagnetic electrodes. In the case of ferromagnetic configuration, the coupling to the SMM leads to an asymmetric tunneling magnetoresistance (TMR), which can be enhanced or suppressed greatly in certain regions. Moreover, a sudden TMR-switch with the variation of magnetic field is observed, which is seen to be caused by the inelastic tunneling.  相似文献   

16.
We investigate the spin-dependent tunneling transport in a heterostructure with two single molecular magnets (SMMs). The tunneling magnetoresistance (TMR) and negative differential conductance due to the strong resonant tunneling in the junction are demonstrated by the master equation approach. At low bias voltage, the device presents low/high resistant states with the initial states of the single molecular magnets parallel/antiparallel. Strong Coulomb repulsive interaction suppresses the current greatly in antiparallel situation. At high voltage, the middle system containing two SMMs tends to be non-polarized, and acts like ordinary quantum dots.  相似文献   

17.
《Physics letters. A》2001,291(6):453-458
We investigate spin-dependent tunneling times in a hybrid semimagnetic/semiconductor heterostructure with a single paramagnetic layer under the influence of both electric and magnetic fields. We find that the tunneling times for electrons strongly depend on the incident energy, the magnitude of the external fields, and on their spin orientation. The results indicate that the tunneling time for spin-up electrons can be longer than that for spin-down ones by up to several orders of magnitude. This implies that tunneling for spin-up and spin-down electrons are separated in time within the same heterostructure.  相似文献   

18.
We have studied the tunneling of Dirac fermions through magnetic barriers in graphene. Magnetic barriers are produced via delta function-like inhomogeneous magnetic fields in which Dirac fermions in graphene experience the tunneling barrier in the real sense in contrast to Klein paradox caused by electrostatic barriers. The transmission through the magnetic barriers as functions of incident energy and angle of incoming fermions shows characteristic oscillations associated with tunneling resonances. We have also found the confined states in the magnetic barrier region which turn out to correspond to the total internal reflection in the usual optics.  相似文献   

19.
We have calculated the IV curves, dynamical conductance, and tunneling magnetoresistance (TMR) of 1D magnetic tunneling junction through singleband tight binding model calculations based on the non-equilibrium Green's function approach. The difference in density of state of two ferromagnetic leads and the bias dependence of the propagator cause intrinsic asymmetries in TMR and dynamical conductance at finite bias. Besides, we have displayed that large TMR can be obtained even at high bias for half metallic leads.  相似文献   

20.
We demonstrate theoretically the anisotropic quantum transport of electrons through an electric field on monolayer and multilayer phosphorene. Using the long-wavelength Hamiltonian with continuum approximation, we find that the transmission probability for transport through an electric field is an oscillating function of incident angle, electric field intensity, as well as the incident energy of electrons. By tuning the electric field intensity and incident angle, the channels can be transited from opaque to transparent. The conductance through the quantum waveguides depends sensitively on the transport direction because of the anisotropic effective mass, and the anisotropy of the conductance can be tuned by the electric field intensity and the number of layers. These behaviors provide us an efficient way to control the transport of phosphorene-based microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号