首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王艳菊  谭嘉进  王永亮  陈向荣 《中国物理》2007,16(10):3046-3051
The lattice parameter bulk modulus and pressure derivative of BeB2 are calculated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density function theory. The calculated results agree well with the average experimental data and other theoretical results. Through the quasi-harmonic Debye model, the dependences of the normalized lattice parameters a/ao, c/c0 and the normalized primitive cell volume V/Vo on pressure P, the variation of the thermal expansion coefficient ~ with pressure P and temperature T, as well as the dependences of the heat capacity Cv on pressure P and temperature T are obtained systematically.  相似文献   

2.
The electronic structure, magnetic states, chemical bonding, and thermodynamic properties of β-US2 are investigated by using first-principles calculation through the density functional theory(DFT) +U approach. The obtained band structure exhibits a direct band gap semiconductor at Γ point with a band gap of 0.9 e V for β-US2, which is in good agreement with the recent experimental data. The charge-density differences, the Bader charge analysis, and the Born effective charges suggest that the U–S bonds of the β-US2 have a mixture of covalent and ionic characters, but the ionic character is stronger than covalent character. The Raman-active, infrared-active, and silent modes at the Γ point are further assigned and discussed. The obtained optical-mode frequencies indicate that the three apparent LO–TO(longitudinal optical–transverse optical) splittings occur in B1 u, B2 u, and B3 umodes, respectively. Furthermore, the Helmholtz free energy ?F, the specific heat ?E, vibrational entropy S, and constant volume CVare studied over a range from 0 K~100 K. We expect that our work can provide some valuable information for further experimental investigation of the dielectric properties and the infrared reflectivity spectrum of uranium chalcogenide.  相似文献   

3.
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1–x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu–Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu–Cohen generalised gradient approximation and the modified Becke–Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard’s law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

4.
Structural, electronic and thermal properties of Zn1?x Mg x S ternary alloys are studied by using the full potential-linearized augmented plane wave method (FP-LAPW) within the density functional theory (DFT). The Wu-Cohen generalized gradient approximation (WC-GGA) is used in this approach for the exchangecorrelation potential. Moreover, the modified Becke-Johnson approximation (mBJ) is adopted for band structure calculations. The dependence of the lattice constant, bulk modulus and band gap on the composition x showed that the first exhibits a small deviation from the Vegard’s law, whereas, a marginal deviation of the second from linear concentration dependence (LCD). The bowing of the fundamental gap versus composition predicted by our calculations agrees well with the available theoretical data. The microscopic origins of the gap bowing are explained by using the approach of Zunger and co-workers. Thermal effects on some macroscopic properties of Zn1?x Mg x S alloys are also investigated using the quasi-harmonic Debye model, in which the phononic effects are considered. As, this is the first quantitative theoretical prediction of the thermal properties of Zn1?x Mg x S alloys, no other calculated results and furthermore no experimental studies are available for comparison.  相似文献   

5.
郝爱民  白静 《中国物理 B》2013,(10):460-462
Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μb per unit cell.  相似文献   

6.
周波  苏庆  贺德衍 《中国物理 B》2009,18(11):4988-4994
Using a first-principles approach based on density functional theory,this paper studies the electronic and dynamical properties of β-V2O5.A smaller band gap and much wider split-off bands have been observed in comparison with αV2O5.The Ramanand infrared-active modes at the Γ point of the Brillouin zone are evaluated with LO/TO splitting,where the symbol denotes the longitudinal and transverse optical model.The nonresonant Raman spectrum of a βV2O5 powder sample is also computed,providing benchmark theoretical results for the assignment of the experimental spectrum.The computed spectrum agrees with the available experimental data very well.This calculation helps to gain a better understanding of the transition from αto β-V2O5.  相似文献   

7.
The structures of B n N20 ? n    (n = 6?18), the clusters of boron nitride, are investigated by the density functional theory calculations. The structures of the obtained low-lying isomers can be described by the following six prototypes: single ring, double ring, three-ring, graphitic-like sheet, fullerene and others. B10N10 is demonstrated to be the most stable cluster against the nonstoichiometric ones. Nonzero magnetic moments, 1.999, 1.998, 2.000, 3.999 and 1.999μ B respectively, are found in five B n N20?n (n = 6, 7, 11, 12, 13) clusters. Further analysis indicates that the magnetic moment of the B6N14 cluster is mainly originated from the N atoms, while those of others are from the B atoms. The magnetic moment are finally attributed to the interesting issues of the 2p electrons due to the breaking of local symmetries, the change of coordination number, charge distribution and orbital hybridization.  相似文献   

8.
The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr–Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr–Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt–Reuss–Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0–300 K and pressure of 0–50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.  相似文献   

9.
The structural and electronic properties of (CdSe)n(1≤n≤5) clusters are calculated using density functional theory within the pseudopotential and generalized gradient approximations. The calculated binding energies and highest occupied molecular orbital lowest unoccupied molecular orbital gaps are compared with those obtained within local density approximation.  相似文献   

10.
ABSTRACT

This work uses first-principles total energy calculations on the basis of density functional theory to predict the structural stability, mechanical and thermodynamic properties of Zn atom doped AlLi phase in Mg–Li–Al–Zn alloy. The values of the equilibrium lattice parameters and the formation of enthalpy are highly consistent with the experimental and previous calculations results available. Negative enthalpies of formation ΔH are predicted for all AlLi phase doped concentrations which have positive consequences for its structural stability. The elastic modulus is deduced by Voigt–Reuss–Hill arithmetic approximation. The bulk modulus of the Al–Li–Zn compounds increases as the doping concentrations increase, which are larger than the value of the AlLi phase. In particular, the stability and mechanical anisotropy of the Al–Li–Zn compounds are discussed. The charge density cloud map is drawn to reveal the bonding characteristics of four compounds. The changes in thermodynamic properties are derived by the phonon frequencies within the quasi-harmonic approximation.  相似文献   

11.
N. Al-Zoubi 《哲学杂志》2018,98(12):1099-1113
Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1–x and AuxNb1–x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner–Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au–V system, the equilibrium Wigner–Seitz radius increase as x increases, while for the Au–Nb system, the equilibrium Wigner–Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C′ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au–V and Au–Nb systems.  相似文献   

12.
The pressure induced phase transition of β-HgS is studied using an ab initio molecular dynamics simulation. The structural phase transformation from the zinc-blende structure to the NaCl-type structure (space group Fm3¯m) and from this structure to CsCl-type structure (Pm3¯m) with the application of hydrostatic pressure is predicted. Additionally, the electronic properties of HgS and various physical properties such as the lattice constants, the bulk modulus and the pressure derivative of the bulk modulus are revealed. Furthermore, these phase transitions are obtained using the total energy and enthalpy calculations. According to these calculations these transformations are occurring at about 20?GPa and 28?GPa for F4¯3mFm3¯m and Fm3¯mPm3¯m, respectively.  相似文献   

13.
李强  杨俊升  黄多辉  曹启龙  王藩侯 《中国物理 B》2014,23(1):17101-017101
The thermodynamic properties and the phase transition of ThO2 from the cubic structure to the orthorhombic structure are investigated using the first-principles projector-augmented wave method. The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon calculations. The anharmonic contribution to quasi-harmonic free energy is accounted for by using an effective method(2010 Phys. Rev. B 81 172301). The results reveal that at ambient temperature, the phase transition from the cubic phase to the orthorhombic phase occurs at 26.45 GPa, which is consistent with the experimental and theoretical data. With increasing temperature, the transition pressure decreases almost linearly. By comparing the experimental results with the calculation results, it is shown that the thermodynamic properties of ThO2 at high temperature improve substantially after including the anharmonic correction to quasi-harmonic free energy.  相似文献   

14.
The electronic structure, magnetic properties and also the bonding mechanism of the pure SiC and compounds SiC:Cr and SiC:Cr:Al have been studied using the Quantum SPRESSO Software within the density-functional theory (DFT). β-SiC, which is a nonmagnetic semiconductor, has more applications in industry. For the magnetic property, it is alloyed with transition metal. One of the transition metal is chromium. The calculations showed that its alloy at both Si site and C site (SiC:Cr) changes the physical properties of the host material and contributes in the molecular bond. It is seen that if the Al atom was doped in the compounds, SiC:Cr will produce hole carriers and the magnetic properties will thus increase to the considerable values due to the mediation effect. The magnetic property will create the up and down spin band gap to filter carriers. The charge density distribution illustrates that the Al atom has the atomic behavior in the compounds Sic:Cr:Al and does not contribute in the molecular bond. For comparison, the calculations were performed for the pure β-SiC.  相似文献   

15.
周晓林  刘科  陈向荣  朱俊 《中国物理》2006,15(12):3014-3018
We employ a first-principles plane wave method with the relativistic analytic pseudopotential of Hartwigsen, Goedecker and Hutter (HGH) scheme in the frame of DFT to calculate the equilibrium lattice parameters and the thermodynamic properties of AlB2 compound with hcp structure. The obtained lattice parameters are in good agreement with the available experimental data and those calculated by others. Through the quasi-harmonic Debye model, obtained successfully are the dependences of the normalized lattice parameters a/a0 and c/c0 on pressure P, the normalized primitive cell volume V/V0 on pressure P, the variation of the thermal expansion α with pressure P and temperature T, as well as the Debye temperature \ThetaD and the heat capacity CV on pressure P and temperature T.  相似文献   

16.
17.
The pressure-dependence of mechanical, electronic and thermodynamic properties of metastable (L12 type) and stable (D023 type) Al3Zr precipitations in Al–Li alloys were investigated by employing the first-principle calculations. The calculated equilibrium parameters are in good agreement with experimental and previous calculation results available. Elastic properties including bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal anisotropic index are determined by Voigt–Reuss–Hill approximation. It is found that for both phases, external pressure can improve the mechanical stability, ductility and plasticity. The electronic structures are determined to reveal the bonding characteristics of both phases. In addition, both phonon method and Gibbs program have been proposed to predict thermodynamic properties of two phases. All of these results can help to have a better understanding of the physical and chemical properties of Al3Zr precipitations in Al–Li alloy. And can offer theoretical guidance for the weight lighting, energy conservation and emissions reduction in the design of new aluminium alloys.  相似文献   

18.
The structural,electronic,mechanical properties,and frequency-dependent refractive indexes of GaSe_(1-x)S_x(x=0,0.25,and 1) are studied by using the first-principles pseudopotential method within density functional theory.The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe_(1-x)S_x(x=0,0.25,and 1).Doping of ε-GaSe with S strengthens the Ga-X bonds and increases its elastic moduli of C_(11) and C_(66).Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of e-GaSe with S.The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S_(Se),rather than interlayer force,is a key factor influencing the electronic exciton energy of the layer semiconductor.The calculated refractive indexes indicate that the doping of ε-GaSe with S reduces its refractive index and increases its birefringence.  相似文献   

19.
N. I. Medvedeva 《哲学杂志》2018,98(23):2135-2150
Ab initio calculations were carried out to compare the mechanical properties of β-based non-canonical Al–Cu–Fe approximants of quasicrystals with cubic (β), monoclinic (η) and orthorhombic (ξ1, ξ2) structures, which all demonstrate high strengthening. The aim was to elucidate the competitive effects of the η- and ξ-ordering and iron content on deformation behaviour of these phases. We found that the Young’s modulus, polycrystalline shear modulus, mechanical stability and shear elastic modulus G(n,m) for different slip planes decrease for β-Al50Cu1-xFex with lowering iron content, but they grow from β-Al50Cu31.25Fe18.75 to the ordered η-Al50Cu45Fe5, and ξ2-Al45.5Cu50Fe4.5 that indicates a growing resistance to plastic deformation due to ordering and agrees well with our experimental finding. The preferable slip systems were predicted based on the calculated generalised stacking fault (GSF) energies in β-(Cu,Fe)Al and η-(Cu,Fe)Al with similar Fe concentration. The GSF energies confirmed also that the strengthening observed in η-phase is related to ordering rather than the Fe effect in consistence with a stronger covalent bonding in η-phase.  相似文献   

20.
The structural, elastic, electronic, and thermodynamic properties of ZrxNbl xC alloys are investigated using the first principles method based on the density functional theory. The results show that the structural properties of Zr~.Nb1 xC alloys vary continuously with the increase of Zr composition. The alloy possesses both the highest shear modulus (215 GPa) and a higher bulk modulus (294 GPa), with a Zr composition of 0.21. Meanwhile, the Zr0.2! Nb0.79C alloy shows metallic conductivity based on the analysis of the density of states. In addition, the thermodynamic stability of the designed alloys is estimated using the calculated enthalpy of mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号