首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在本文基于Hill动力学与Michaelis-Menten方程,建立理论模型研究VPRBP蛋白与Abl激酶诱发、抑制前列腺癌的一种物理机制.研究发现,DNA损伤使得ATM(共济失调毛细血管扩张症突变)很快激活,并激活上调p53蛋白表达,DNA损伤的后续破坏会在很大程度上通过p53表达上调而被抑制. VPRBP通过上调MDM2蛋白的激活水平,使得p53表达水平异常,进而无法正常抑制前列腺癌的发生发展.通过考察Abl在前列腺癌进程中的作用发现,Abl使得AKT的表达水平下调,由于Abl对AKT的抑制作用,致使在AKT信号通路中MDM2表达水平受到抑制,进而稳定p53表达.由此表明了,过少的Abl对AKT的抑制程度减弱,不仅使得细胞代谢出现紊乱,而且还会促使p53正常的周期表达水平异常,对DNA损伤诱发的肿瘤抑制性减弱,进而促进前列腺癌的发生发展.基于本文模型,可以预测VPRBP与Abl作为诱发、抑制前列腺癌的调节剂对现有和潜在的抗癌治疗较为敏感. VPRBP与Abl在诱发、抑制前列腺癌过程中的时滞效应,导致信号通路中p53与PTEN蓄积量增多、AKT蓄积量减少,以及Plk1周期振荡相位转移...  相似文献   

2.
We present an overview of mechanisms responsible for simple or complex oscillatory behavior in metabolic and genetic control networks. Besides simple periodic behavior corresponding to the evolution toward a limit cycle we consider complex modes of oscillatory behavior such as complex periodic oscillations of the bursting type and chaos. Multiple attractors are also discussed, e.g., the coexistence between a stable steady state and a stable limit cycle (hard excitation), or the coexistence between two simultaneously stable limit cycles (birhythmicity). We discuss mechanisms responsible for the transition from simple to complex oscillatory behavior by means of a number of models serving as selected examples. The models were originally proposed to account for simple periodic oscillations observed experimentally at the cellular level in a variety of biological systems. In a second stage, these models were modified to allow for complex oscillatory phenomena such as bursting, birhythmicity, or chaos. We consider successively (1) models based on enzyme regulation, proposed for glycolytic oscillations and for the control of successive phases of the cell cycle, respectively; (2) a model for intracellular Ca(2+) oscillations based on transport regulation; (3) a model for oscillations of cyclic AMP based on receptor desensitization in Dictyostelium cells; and (4) a model based on genetic regulation for circadian rhythms in Drosophila. Two main classes of mechanism leading from simple to complex oscillatory behavior are identified, namely (i) the interplay between two endogenous oscillatory mechanisms, which can take multiple forms, overt or more subtle, depending on whether the two oscillators each involve their own regulatory feedback loop or share a common feedback loop while differing by some related process, and (ii) self-modulation of the oscillator through feedback from the system's output on one of the parameters controlling oscillatory behavior. However, the latter mechanism may also be viewed as involving the interplay between two feedback processes, each of which might be capable of producing oscillations. Although our discussion primarily focuses on the case of autonomous oscillatory behavior, we also consider the case of nonautonomous complex oscillations in a model for circadian oscillations subjected to periodic forcing by a light-dark cycle and show that the occurrence of entrainment versus chaos in these conditions markedly depends on the wave form of periodic forcing. (c) 2001 American Institute of Physics.  相似文献   

3.
夏俊峰  贾亚 《中国物理 B》2010,19(4):40506-040506
Taking the interaction between a DNA damage repair module, an ATM module, and a P53--MDM2 oscillation module into account, this paper presents a mathematical model of a P53 oscillation network triggered by a DNA damage signal in individual cells. The effects of the DNA damage signal and the delay time of P53-induced MDM2 expression on the behaviours of the P53 oscillation network are studied. In the oscillatory state of the P53--MDM2 oscillator, it is found that the pulse number of P53--P oscillation increases with the increase of the initial DNA damage signal, whereas the amplitude and the period of P53--P oscillation are fixed for different initial DNA damage signals, and the period numbers of P53--P oscillations decrease with the increase of time delay of MDM2 expression induced by P53. These theoretical predictions are consistent with previous experimental results. The combined negative feedback of P53--MDM2 with the time delay of P53-induced MDM2 expression causes oscillation behaviour in the P53 network.  相似文献   

4.
刘波  晏世伟  耿轶钊 《中国物理 B》2011,20(12):128702-128702
There have been many recent studies devoted to the consequences of stochasticity in protein circuitry. Stress conditions, including DNA damage, hypoxia, heat shock, nutrient deprivation, and oncogene activation, can result in the activation and accumulation of p53. Several experimental studies show that oscillations can be induced by DNA damage following nuclear irradiation. To explore the underlying dynamical features and the role of stochasticity, we discuss the oscillatory dynamics in the well-studied regulatory network motif. The fluctuations around the fixed point of a delayed system are Gaussian in the limit of sufficiently weak delayed feedback, and remain Gaussian along a limit cycle when viewed tangential to the trajectory. The experimental results are recapitulated in this study. We illustrate several features of the p53 activities, which are robust when the parameters change. Furthermore, the distribution in protein abundance can be characterized by its non-Gaussian nature.  相似文献   

5.
毕远宏  杨卓琴  何小燕 《物理学报》2016,65(2):28701-028701
肿瘤抑制蛋白p53的动力学在一定程度上可以决定DNA损伤后的细胞命运.p53的动力学行为与p53信号通路中p53-Mdm2振子模块密切相关.然而,p53的负调控子Mdm2的生成速率的增加使其在一些癌细胞中过表达.因此探讨Mdm2生成速率对p53动力学的影响有重要意义.同时,PDCD5作为p53的激活子也调控p53的表达.因此,本文针对PDCD5调控的p53-Mdm2振子模型,通过分岔分析获得了Mdm2生成速率所调控的p53的单稳态、振荡以及单稳态与振荡共存的动力学行为,且稳定性通过能量面进行了分析.此外,噪声强度对p53动力学的稳定性有重要的影响.因此,针对p53的振荡行为,探讨了噪声强度对势垒高度和周期的影响.本文所获得的结果对理解DNA损伤后的p53信号通路调控起到一定的指导作用.  相似文献   

6.
The effect of delay, nonlinearity and noise on oscillatory motion is of permanent interest for theoretical and experimental research. Here we explore a negative feedback loop between p53 and Mdm2 with a time delay, which is a key circuit in the response of cells to damage. This circuit shows noisy sustained oscillations in individual human cells following DNA damage, and damped oscillations at the cell population level. We demonstrate the effect of delay on the oscillation, and the correlation in time course. In a multi-species system, the events at different time points which span a time delay are coupled even when the delay is large compared with the other characteristic times of the system. We also clarify that the dynamics at the single-cell level appears to be coherent resonance, and the origin of the damped oscillation at the macroscopic level out of the sustained ones at the single-cell level can be ascribed to the dephasing process which is induced by the interplay between nonlinearity and noise. The findings are consistent with experimental observations and advance our understanding of the dynamics of the p53 network.  相似文献   

7.
8.
张丽娟  晏世伟  卓益忠 《物理学报》2007,56(4):2442-2447
最新实验结果表明,在受到各种辐射而引起DNA损伤后,在单体细胞和群体细胞情况下,细胞中的p53蛋白浓度表现为非衰减振荡和衰减振荡两种不同的动力学行为.通过研究p53-Mdm2负反馈回路的非线性动力学行为,分析了各种(特别是DNA损伤、p53和 Mdm2蛋白浓度三者之间)动力学关系,提出了一个能同时描述这两种不同动力学行为的非线性模型. 关键词: p53-Mdm2负反馈回路 非衰减振荡和衰减振荡 非线性动力学模型  相似文献   

9.
We propose a novel scheme for interconnection of multiple high-speed (2.5 10 Gbit s) asynchronous transfer mode (ATM) streams through an optical wavelength division multiplexing (WDM) network with a total network capacity of up to 4 Tbit/s. The proposed architecture is based on placing the optical WDM portion of the network in a physically small area, i.e., one central office or in a single rack. This helps to avoid technological obstacles such as power budget, dispersion, and synchronization limitations as well as optical output buffering. The interconnection is an ATM packet switched network and provides optical contention resolution. We show that the implementation of such a network is possible using currently available optoelectronic technology. An optional extension of the network is proposed by a combination of WDM and space division multiplexing (SDM) technology. Simulation results are presented, indicating network throughput of up to 100 %.  相似文献   

10.
We propose a novel scheme for interconnection of multiple high-speed (2.5 10 Gbit s) asynchronous transfer mode (ATM) streams through an optical wavelength division multiplexing (WDM) network with a total network capacity of up to 4 Tbit/s. The proposed architecture is based on placing the optical WDM portion of the network in a physically small area, i.e., one central office or in a single rack. This helps to avoid technological obstacles such as power budget, dispersion, and synchronization limitations as well as optical output buffering. The interconnection is an ATM packet switched network and provides optical contention resolution. We show that the implementation of such a network is possible using currently available optoelectronic technology. An optional extension of the network is proposed by a combination of WDM and space division multiplexing (SDM) technology. Simulation results are presented, indicating network throughput of up to 100 %.  相似文献   

11.
12.
General amplitude equations are derived for reaction-diffusion systems near the soft onset of birhythmicity described by a supercritical pitchfork-Hopf bifurcation. Using these equations and applying singular perturbation theory, we show that stable autonomous pacemakers represent a generic kind of spatiotemporal patterns in such systems. This is verified by numerical simulations, which also show the existence of breathing and swinging pacemaker solutions. The drift of self-organized pacemakers in media with spatial parameter gradients is analytically and numerically investigated.  相似文献   

13.
BRCA1 has been proposed to be tightly linked to the resistance of tumor cells to ionizing radiation. The pathway leading to this phenomenon is not yet clear. In this work, we investigated the role of BRCA1 in the apoptosis regulation in response to carbon ion irradiation. We utilized three different cancer cell lines with various states for BRCA1 and p53 to identify the relationship between endogenous BRCA1 and the apoptosis-related genes, and determine whether p53 function would affect the role of BRCA1 in...  相似文献   

14.
We study the bifurcations of a set of nine nonlinear ordinary differential equations that describe regulation of the cyclin-dependent kinase that triggers DNA synthesis and mitosis in the budding yeast, Saccharomyces cerevisiae. We show that Clb2-dependent kinase exhibits bistability (stable steady states of high or low kinase activity). The transition from low to high Clb2-dependent kinase activity is driven by transient activation of Cln2-dependent kinase, and the reverse transition is driven by transient activation of the Clb2 degradation machinery. We show that a four-variable model retains the main features of the nine-variable model. In a three-variable model exhibiting birhythmicity (two stable oscillatory states), we explore possible effects of extrinsic fluctuations on cell cycle progression.  相似文献   

15.
We present a model for a synthetic gene oscillator and consider the coupling of the oscillator to a periodic process that is intrinsic to the cell. We investigate the synchronization properties of the coupled system, and show how the oscillator can be constructed to yield a significant amplification of cellular oscillations. We reduce the driven oscillator equations to a normal form, and analytically determine the amplification as a function of the strength of the cellular oscillations. The ability to couple naturally occurring genetic oscillations to a synthetically designed network could lead to possible strategies for entraining and/or amplifying oscillations in cellular protein levels.  相似文献   

16.
The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values. Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks. (c) 2001 American Institute of Physics.  相似文献   

17.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

18.
We discuss the universal unfolding of a planar codimension four singularity which occurs in the five dimensional Lorenz equations. All structurally stable phase portraits are given and some representative bifurcation diagrams are displayed. These phase portraits have a rich structure including up to four limit cycles. The bifurcation sets in unfolding space — where the phase portraits undergo a qualitative change — are determined and new types of saddle loops are found. We show that the codimension four singularity occurs stably in a model for the laser with saturable absorber. Solution branches indicating birhythmicity and saddle loops for the pulsed mode of laser operation are found in bifurcation diagrams corresponding to the universal unfolding of the codimension four singularity. This explains numerical solutions of other authors which so far have not been related to a bifurcation analysis. Hints to other Lorenz models are given.  相似文献   

19.
Chaotic oscillations in a map-based model of neural activity   总被引:2,自引:0,他引:2  
We propose a discrete time dynamical system (a map) as a phenomenological model of excitable and spiking-bursting neurons. The model is a discontinuous two-dimensional map. We find conditions under which this map has an invariant region on the phase plane, containing a chaotic attractor. This attractor creates chaotic spiking-bursting oscillations of the model. We also show various regimes of other neural activities (subthreshold oscillations, phasic spiking, etc.) derived from the proposed model.  相似文献   

20.
耿读艳  谢红娟  万晓伟  徐桂芝 《物理学报》2014,63(1):18702-018702
细胞生长的每个阶段都离不开蛋白质相互作用.研究细胞周期的功能、调控机理及参与调控的蛋白质之间的关系对生物工程等领域有重大的应用价值.本文通过研究电离辐射下生物体细胞的DNA损伤后,细胞内以p53为核心的扩展蛋白调控网络的功能、原理及其自修复机理,在现有蛋白网络基础上引入更多蛋白网络调控因子来建立蛋白调控网络,仿真模拟更为全面的细胞周期进程;并且从复杂网络图论和细胞周期调控两个方面分析扩展PMP调控网络的抗扰能力及自修复机理,结果表明:1)蛋白网络在对抗环境中出现的小扰动时具有较强的稳定性.但在面对蓄意攻击时网络的稳定性较差.2)受损的DNA能否被修复取决于p53蛋白的动力学行为,即低损伤与中损伤情况下,p53可诱导细胞周期进程阻滞来完成细胞的自修复;而当高损伤或过损伤时,p53蛋白浓度表现为周期振荡行为并诱导细胞凋亡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号