首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel imaging and compressed sensing have been arguably the most successful and widely used techniques for fast magnetic resonance imaging (MRI). Recent studies have shown that the combination of these two techniques is useful for solving the inverse problem of recovering the image from highly under-sampled k-space data. In sparsity-enforced sensitivity encoding (SENSE) reconstruction, the optimization problem involves data fidelity (L2-norm) constraint and a number of L1-norm regularization terms (i.e. total variation or TV, and L1 norm). This makes the optimization problem difficult to solve due to the non-smooth nature of the regularization terms. In this paper, to effectively solve the sparsity-regularized SENSE reconstruction, we utilize a new optimization method, called fast composite splitting algorithm (FCSA), which was developed for compressed sensing MRI. By using a combination of variable splitting and operator splitting techniques, the FCSA algorithm decouples the large optimization problem into TV and L1 sub-problems, which are then, solved efficiently using existing fast methods. The operator splitting separates the smooth terms from the non-smooth terms, so that both terms are treated in an efficient manner. The final solution to the SENSE reconstruction is obtained by weighted solutions to the sub-problems through an iterative optimization procedure. The FCSA-based parallel MRI technique is tested on MR brain image reconstructions at various acceleration rates and with different sampling trajectories. The results indicate that, for sparsity-regularized SENSE reconstruction, the FCSA-based method is capable of achieving significant improvements in reconstruction accuracy when compared with the state-of-the-art reconstruction method.  相似文献   

2.
Improved matrix inversion in image plane parallel MRI   总被引:1,自引:0,他引:1  
A new 3D parallel magnetic resonance imaging (MRI) method named Generalized Unaliasing Incorporating Support constraint and sensitivity Encoding (GUISE) is presented. GUISE allows direct image recovery from arbitrary Cartesian k-space trajectories. However, periodic k-space sampling patterns are considered for reconstruction efficiency. Image recovery methods such as 2D SENSE (SENSitivity Encoding) and 2D CAIPIRINHA (Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration) are special instances of GUISE where specific restrictions are placed on the k-space sampling patterns used. It is shown that the sampling pattern has large impacts on the image reconstruction error due to noise. An efficient sampling pattern design method that incorporates prior knowledge of object support and coil sensitivity profile is proposed. It requires no experimental trials and could be used in clinical imaging. Comparison of the proposed sampling pattern design method with 2D SENSE and 2D CAIPIRINHA are made based on both simulation and experiment results. It is seen that this new adaptive sampling pattern design method results in a lower noise level in reconstructions due to better exploitation of the coil sensitivity variation and object support constraint. In addition, elimination of the non-object region from reconstruction potentially allows an acceleration factor higher than the number of receiver coils used.  相似文献   

3.
Magnetic resonance imaging (MRI) has an important feature that it provides multiple images with different contrasts for complementary diagnostic information. However, a large amount of data is needed for multi-contrast images depiction, and thus, the scan is time-consuming. Many methods based on parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) are applied to accelerate multi-contrast MR imaging. Nevertheless, the image reconstructed by sophisticated pMRI methods contains residual aliasing artifact that degrades the quality of the image when the acceleration factor is high. Other methods based on CS always suffer the regularization parameter-selecting problem. To address these issues, a new method is presented for joint multi-contrast image reconstruction and coil sensitivity estimation. The coil sensitivities can be shared during the reconstruction due to the identity of coil sensitivity profiles of different contrast images for imaging stationary tissues. The proposed method uses the coil sensitivities as sharable information during the reconstruction to improve the reconstruction quality. As a result, the residual aliasing artifact can be effectively removed in the reconstructed multi-contrast images even if the acceleration factor is high. Besides, as there is no regularization term in the proposed method, the troublesome regularization parameter selection in the CS can also be avoided. Results from multi-contrast in vivo experiments demonstrated that multi-contrast images can be jointly reconstructed by the proposed method with effective removal of the residual aliasing artifact at a high acceleration factor.  相似文献   

4.
PurposeThe aim of this work is to implement real-time 3D MR thermometry for high intensity focused ultrasound (HIFU) monitoring.MethodsVolumetric MR thermometry was implemented based on a 3D echo-shifted sequence with short TR to improve temperature sensitivity. The 3D acquisition was accelerated in two phase encoding directions with controlled aliasing in volumetric parallel imaging (CAIPIRINHA). Image reconstruction was run in an open source reconstruction platform (Gadgetron).ResultsPhantom experiments showed the proposed volumetric thermometry was comparable to the fiber optical thermometer. In-vivo animal experiments in rabbit thigh showed that the temperature error before and after 4× acceleration was less than 0.65 °C. Finally, real-time 3D thermometry with temporal resolution ~3 s and spatial resolution 2 × 2 × 5 mm3 (spatial coverage 192 × 192 × 80 mm3) was achieved with Gadgetron reconstruction.ConclusionReal-time temperature monitoring was achieved in-vivo by using parallel imaging accelerated 3D echo-shifted sequence with Gadgetron reconstruction.  相似文献   

5.
金朝  张瀚铭  闫镔  李磊  王林元  蔡爱龙 《中国物理 B》2016,25(3):38701-038701
Sparse-view x-ray computed tomography(CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform(NUFFT) is presented in this work along with advanced total variation(TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.  相似文献   

6.
In order to enhance the visual quality of underwater images, applications such as enhancement and restoration can be applied, but the resolution is still limited. Super-resolution reconstruction is a widely used technique for improving resolution beyond the limit of imaging system. With knowledge of the point spread function and techniques of regularization, the performance of reconstruction can be further enhanced. The presented effort proposed a robust image super-resolution reconstruction method under maximum a posteriori framework with regularization by the point spread function for underwater imaging detection. Objective image quality metrics are used to quantify the effectiveness of the reconstruction. Experimental results showed that the proposed method can effectively improve the resolution and quality of underwater imaging detection.  相似文献   

7.
Multi-contrast magnetic resonance imaging (MRI) is a useful technique to aid clinical diagnosis. This paper proposes an efficient algorithm to jointly reconstruct multiple T1/T2-weighted images of the same anatomical cross section from partially sampled k-space data. The joint reconstruction problem is formulated as minimizing a linear combination of three terms, corresponding to a least squares data fitting, joint total variation (TV) and group wavelet-sparsity regularization. It is rooted in two observations: 1) the variance of image gradients should be similar for the same spatial position across multiple contrasts; 2) the wavelet coefficients of all images from the same anatomical cross section should have similar sparse modes. To efficiently solve this problem, we decompose it into joint TV regularization and group sparsity subproblems, respectively. Finally, the reconstructed image is obtained from the weighted average of solutions from the two subproblems, in an iterative framework. Experiments demonstrate the efficiency and effectiveness of the proposed method compared to existing multi-contrast MRI methods.  相似文献   

8.
We propose a novel method by combining the total variation(TV) with the high-degree TV(HDTV) to improve the reconstruction quality of sparse-view sampling photoacoustic imaging(PAI). A weighing function is adaptively updated in an iterative way to combine the solutions of the TV and HDTV minimizations. The fast iterative shrinkage/thresholding algorithm is implemented to solve both the TV and the HDTV minimizations with better convergence rate. Numerical results demonstrate the superiority and efficiency of the proposed method on sparse-view PAI. In vitro experiments also illustrate that the method can be used in practical sparse-view PAI.  相似文献   

9.
In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.  相似文献   

10.
Parallel magnetic resonance imaging through sensitivity encoding using multiple receiver coils has emerged as an effective tool to reduce imaging time or to improve image SNR. The quality of reconstructed images is limited by the inaccurate estimation of the sensitivity map, noise in the acquired k-space data and the ill-conditioned nature of the coefficient matrix. Tikhonov regularization is a popular method to reduce or eliminate the ill-conditioned nature of the problem. In this approach, selection of the regularization map and the regularization parameter is very important. Perceptual difference model (PDM) is a quantitative image quality evaluation tool that has been successfully applied to varieties of MR applications. High correlation between the human rating and PDM score shows that PDM should be suitable to evaluate image quality in parallel MR imaging. By applying PDM, we compared four methods of selecting the regularization map and four methods of selecting the regularization parameter. We found that a regularization map obtained using generalized series (GS) together with a spatially adaptive regularization parameter gave the best reconstructions. PDM was also used as an objective function for optimizing two important parameters in the spatially adaptive method. We conclude that PDM enables one to do comprehensive experiments and that it is an effective tool for designing and optimizing reconstruction methods in parallel MR imaging.  相似文献   

11.
乔志伟 《物理学报》2018,67(19):198701-198701
基于优化的迭代法,可以结合压缩感知和低秩矩阵等稀疏优化技术高精度地重建图像.其中,总变差最小(total variation minimization,TV)模型是一种简单有效的优化模型.传统的约束TV模型,使用数据保真项为约束项,TV正则项为目标函数.本文研究TV约束的、数据分离最小(TV constrained,data divergence minimization,TVcDM)新型TV模型及其求解算法.详细推导了TVcDM模型的Chambolle-Pock(CP)算法,验证了模型及算法的正确性;分析了算法的收敛行为;评估了模型的稀疏重建能力;分析了模型参数的选择对重建的影响及算法参数对收敛速率的影响.研究表明,TVcDM模型有高精度稀疏重建能力;TVcDM-CP算法确保收敛,但迭代过程中有振荡现象;TV限对重建有重要影响,参数值过大会引入噪声而过小会模糊图像细节;算法参数的不同选取会导致不同的收敛速率.  相似文献   

12.
Parallel imaging methods are routinely used to accelerate the image acquisition process in cardiac cine imaging. The addition of a temporal acceleration method, whereby k-space is sampled differently for different time frames, has been shown in prior work to improve image quality as compared to parallel imaging by itself. However, such temporal acceleration strategies prove difficult to combine with retrospectively gated cine imaging. The only currently published method to feature such combination, by Hansen et al. [Magn Reson Med 55 (2006) 85-91] tends to be associated with prohibitively long reconstruction times. The goal of the present work was to develop a retrospectively gated cardiac cine method that features both parallel imaging and temporal acceleration, capable of achieving significant acceleration factors on commonly available hardware and associated with reconstruction times short enough for practical use in a clinical context.Seven cardiac patients and a healthy volunteer were recruited and imaged, with acceleration factors of 3.5 or 4.5, using an eight-channel product cardiac array on a 1.5-T system. The prescribed FOV value proved slightly too small in three patients, and one of the patients had a bigemini condition. Despite these additional challenges, good-quality results were obtained for all slices and all patients, with a reconstruction time of 0.98±0.07 s per frame, or about 20 s for a 20-frame slice, using a single processor on a single PC. As compared to using parallel imaging by itself, the addition of a temporal acceleration strategy provided much resistance to artifacts.  相似文献   

13.
Images of high-resolution are desired and often required in most photoelectronic imaging applications, and corresponding image reconstruction algorithm has became the frontier topics. On the basis of stochastic theory, a novel super-resolution image reconstruction algorithm based on Tukey norm data fusion and bilateral total variation regularization is proposed in this paper. The Tukey norm is employed for fusing the data of low-resolution frames and removing outliers in the data, and then aiming at the sickness of super-resolution reconstruction, the bilateral total variation regularization as a priori knowledge about the solution is incorporated to remove the artifacts from the final answer and improve the convergence rate. Simulated and real experiment results show that the proposed algorithm can improve the image resolution greatly and it is immune to noise and errors in motion and blur estimation.  相似文献   

14.
 针对闪光照相图像信噪比低的特点,提出了一种基于广义变分正则化的图像重建算法,该方法采用p-范数取代目前广泛采用的全变分范数作为正则项,构造了用于图像重建的展平泛函,将图像重建问题转化为目标泛函最优化问题,采用固定点迭代法求解图像重建的最优解。数值计算结果表明,该算法在重建过程中能够有效抑制图像噪声,并加大对图像边缘的保持能力,从而提高了图像重建质量,是一种有效且性能优良的闪光照相图像重建算法。  相似文献   

15.
Dynamic contrast-enhanced magnetic resonance imaging (MRI) is a technique used to study and track contrast kinetics in an area of interest in the body over time. Reconstruction of images with high contrast and sharp edges from undersampled data is a challenge. While good results have been reported using a radial acquisition and a spatiotemporal constrained reconstruction (STCR) method, we propose improvements from using spatially adaptive weighting and an additional edge-based constraint. The new method uses intensity gradients from a sliding window reference image to improve the sharpness of edges in the reconstructed image. The method was tested on eight radial cardiac perfusion data sets with 24 rays and compared to the STCR method. The reconstructions showed that the new method, termed edge-enhanced spatiotemporal constrained reconstruction, was able to reconstruct images with sharper edges, and there were a 36%±13.7% increase in contrast-to-noise ratio and a 24%±11% increase in contrast near the edges when compared to STCR. The novelty of this paper is the combination of spatially adaptive weighting for spatial total variation (TV) constraint along with a gradient matching term to improve the sharpness of edges. The edge map from a reference image allows the reconstruction to trade-off between TV and edge enhancement, depending on the spatially varying weighting provided by the edge map.  相似文献   

16.
传统正则化超分辨重建得到的图像往往存在过度平滑或伪信息残留的问题,结合超分辨重建模型对重建图像伪信息的产生进行了分析,针对传统方法的不足提出了基于图像区域信息自适应的正则化方法,通过图像的区域信息将图像划分为平滑区与非平滑区域,对不同区域选用不同的先验模型进行约束。同时考虑人眼的视觉感知特性,结合区域信息实现正则化参数的自适应选取。实验结果表明该方法在抑制重建图像伪信息的同时能有效保护细节,效果要优于传统方法与单一的先验模型约束,对于红外与可见光图像重建效果的提升提供了一定的理论参考。  相似文献   

17.
PurposeTo develop a regularized image reconstruction algorithm for improved scan acceleration of phase-contrast (PC) flow MRI.MethodsBased on the magnitude similarity between bipolar-encoded k-space data, magnitude-difference regularization was incorporated into the conventional compressed sensing (CS) reconstruction. The gradient of the magnitude regularization was derived so the reconstruction problem can be solved using non-linear conjugate gradient with backtracking line search. Phase contrast flow data obtained in the peripheral arteries of healthy and patient subjects were retrospectively undersampled for testing the proposed reconstruction method. Three-dimensional velocity-encoded PC flow MRI was performed with prospective 4-fold undersampling for measuring arotic flow velocity in a healthy volunteer.ResultsIn the femoral arteries of healthy volunteers, the root-mean-square (RMS) errors of mean velocities were 0.56 ± 0.09 cm/s with CS-only reconstruction and 0.46 ± 0.08 cm/s with addition of magnitude regularization for three-fold acceleration; 1.34 ± 0.17 cm/s (CS only) and 1.08 ± 0.15 cm/s (magnitude regularized) for four-fold acceleration. In the iliac arteries of the patient, the RMS errors of mean velocities were 0.72 ± 0.12 cm/s and 0.56 ± 0.10 for three-fold acceleration, and 1.75 ± 0.21 and 1.24 ± 0.19 cm/s for four-fold acceleration (in the order of CS-only and magnitude regularized reconstructions). In the popliteal arteries, the RMS errors were 0.61 ± 0.10 cm/s and 0.42 ± 0.11 for three-fold acceleration, and 1.41 ± 0.19 and 1.12 ± 0.17 cm/s for four-fold acceleration. The maximum through-plane mean flow velocities were measured as 63.2 cm/s and 84.5 cm/s in ascending and descending aortas, respectively.ConclusionThe addition of magnitude-difference regularization into conventional CS reconstruction improves the accuracy of image reconstruction using highly undersampled phase-contrast flow MR data.  相似文献   

18.
We study reflection diffuse optical tomography using two-dimensional (2D) continuous-wave source-detector arrays on the surface of semi-infinite medium, aiming at imaging the perfusion and the hemoglobin oxygen saturation variation of human cerebral cortex with brain activation. We had previously formulated the inverse problem with Moore-Penrose inversion. When we use simple regularization in this inverse problem, the reconstruction sensitivity decreases markedly with the depth so that the signal in the deep range may be masked by an unwanted signal in the shallow range. In this paper, we propose a depth-adaptive regularized reconstruction, in which we assign a smaller regularization parameter with the depth. We demonstrate improvement of the three-dimensional (3D) reconstruction uniformity using the proposed scheme.  相似文献   

19.
PurposeSimultaneous multi-slice (SMS) imaging accelerates MRI data acquisition by exciting multiple image slices with a single radiofrequency pulse. Overlapping slices encoded in acquired signal are separated using a mathematical model, which requires estimation of image reconstruction kernels using calibration data. Several parameters used in SMS reconstruction impact the quality and fidelity of final images. Therefore, finding an optimal set of reconstruction parameters is critical to ensure that accelerated acquisition does not significantly degrade resulting image quality.MethodsGradient-echo echo planar imaging data were acquired with a range of SMS acceleration factors from a cohort of five volunteers with no known neurological pathology. Images were collected using two available phased-array head coils (a 48-channel array and a reduced diameter 32-channel array) that support SMS. Data from these coils were identically reconstructed offline using a range of coil compression factors and reconstruction kernel parameters. A hybrid space (k-x), externally-calibrated coil-by-coil slice unaliasing approach was used for image reconstruction. The image quality of the resulting reconstructed SMS images was assessed by evaluating correlations with identical echo-planar reference data acquired without SMS. A finger tapping functional MRI (fMRI) experiment was also performed and group analysis results were compared between data sets reconstructed with different coil compression levels.ResultsBetween the two RF coils tested in this study, the 32-channel coil with smaller dimensions clearly outperformed the larger 48-channel coil in our experiments. Generally, a large calibration region (144–192 samples) and small kernel sizes (2–4 samples) in ky direction improved image quality. Use of regularization in the kernel fitting procedure had a notable impact on the fidelity of reconstructed images and a regularization value 0.0001 provided good image quality. With optimal selection of other hyperparameters in the hybrid space SMS unaliasing algorithm, coil compression caused small reduction in correlation between single-band and SMS unaliased images. Similarly, group analysis of fMRI results did not show a significant influence of coil compression on resulting image quality.ConclusionsThis study demonstrated that the hyperparameters used in SMS reconstruction need to be fine-tuned once the experimental factors such as the RF receive coil and SMS factor have been determined. A cursory evaluation of SMS reconstruction hyperparameter values is therefore recommended before conducting a full-scale quantitative study using SMS technologies.  相似文献   

20.
方晟  郭华 《中国物理 B》2014,(5):534-540
The relatively long scan time is still a bottleneck for both clinical applications and research of magnetic resonance imaging. To reduce the data acquisition time, we propose a novel fast magnetic resonance imaging method based on parallel variable-density spiral acquisition, which combines undersampling optimization and nonlocal total variation reconstruction.The undersampling optimization promotes the incoherence of resultant aliasing artifact via the "worst-case" residual error metric, and thus accelerates the data acquisition. Moreover, nonlocal total variation reconstruction is utilized to remove such an incoherent aliasing artifact and so improve image quality. The feasibility of the proposed method is demonstrated by both numerical phantom simulation and in vivo experiment. The experimental results show that the proposed method can achieve high acceleration factor and effectively remove an aliasing artifact from data undersampling with well-preserved image details. The image quality is better than that achieved with the total variation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号