共查询到19条相似文献,搜索用时 62 毫秒
1.
考虑固定设计下具有非参数AR(1)的非参数回归模型,综合最小二乘和非参数核估计法,定义了非参数函数的估计量,在适当的条件下,研究了它们的渐近性质. 相似文献
2.
卢学文 《数理统计与应用概率》1995,10(2):56-66
设非参数回归模型yi=f(xi)+εi,i=1,...,n,f(x)是〔0,1〕上的未知的非参数回归函数,f(x)的核估计具有一个光滑参数h分别利用CV和GCV准则来选择参数h,得到f(x)的核估计及相应的Stein估计,本文证明了这类估计在强收敛意义下是渐近最优的。 相似文献
3.
研究一类新的非参数回归模型回归函数的核估计问题,其中误差项为一阶非参数自回归方程.通过重复利用Watson-Nadaraya核估计方法,构造了回归函数及误差回归函数的估计量分别为m(.)和ρ(.),在适当的条件下,证明了估计量m(.)和ρ(.)的渐近正态性. 相似文献
4.
研究一类新的半参数回归模型回归函数的核估计问题,其中误差项为一阶非参数自回归过程.通过重复利用Watson-Nadaraya核估计方法,构造了回归函数及误差回归函数的估计量分别为β,g(·)和ρ(·),在适当的条件下,证明了估计量β,g(·)和ρ(·)的渐近正态性. 相似文献
5.
戴丽娜 《数学的实践与认识》2008,38(24)
对非参数理论进行了系统地综述.非参数理论中一个比较重要的内容是估计方法,常见的非参数估计方法有核估计、局部多项式估计、近邻估计等.光滑参数的选取、"维数灾难"与边界点问题也是与非参数理论有关的重要内容,也对这些方面进行综述.最后,文章还综述了非参数技术在时间序列模型中的有关应用问题. 相似文献
6.
7.
在本文中提出一个新方法——阶梯折算法来研究在任意载荷下任意非均匀和任意变厚度伯努利-欧拉梁的动力响应问题.研究了自由振动和强迫振动.新方法需要将区间离散为一定数目的元素,每个元素可看作是均匀和等厚度的.因此均匀、等厚度梁的一般解可在每个元素上应用.然后用初参数表示的整个梁的一般解使之满足相邻二元素间的物理和几何连续条件,这样就可以得到解析形式的自由振动的频率方程和解析形式的强迫振动的最终解,它化为求解二元线性代数方程,与离散元素的数目无关.现在的方法可推广应用至任意非均匀及任意变厚度有粘滞性和其他种类的梁以及其他结构元件问题上去. 相似文献
8.
两参数指数-威布尔分布形状参数的经验贝叶斯估计 总被引:2,自引:1,他引:1
研究了两参数指数-威布尔分布形状参数的经验贝叶斯(EB)估计问题,并假定当其中一个形状参数α已知时,给出了另一个形状参数θ在两种不同损失函数情况下的EB估计的表达式.并运用随机模拟方法,将两种不同损失函数下的EB估计进行了比较. 相似文献
9.
《数理统计与管理》2019,(1):49-61
本文利用非参数贝叶斯方法进行随机波动建模。通常的参数随机波动模型适用于证券市场中的综合指数数据,而对个股数据和小范围指数数据的拟合效果较差,主要原因是其收益率数据的变化规律更为复杂、具有更厚的尾部行为,而非参数贝叶斯方法的随机波动模型无需进行分布假设,具有很强的灵活性。本文利用SV-DPM模型对IBM的股票价格数据和上证50指数数据进行建模,研究发现非参数随机波动模型能拟合参数随机波动模型难以扑捉到的数据特征,实证表明有充分的依据支持非参数贝叶斯随机波动模型。论文的研究有助于捕捉金融资产的时变波动性质,能更好的揭示金融市场的运行规律,为期权定价和金融风险管理提供依据,对于防范与控制金融风险有着重要意义。 相似文献
10.
1、引言 多重网格方法是求解偏微分方程的高效快速算法,在实际中得到广泛应用.[2][6]中考察了Morley元的多重网格方法,并用于双调和方程问题。 相似文献
11.
12.
本文对广义风险过程中的渐近方差作了非参数估计,得出并证明了两个定理,为广义风险过程中破产概率的区间估计作了理论准备. 相似文献
13.
在多元非参数模型中带宽和阶的选择对局部多项式估计量的表现十分重要。本文基于交叉验证准则提出一个自适应贝叶斯带宽选择方法。在给定的误差密度函数下,该方法可推导出对应的似然函数,并构造带宽参数的后验密度函数。随后,通过带宽的后验期望可同时获得阶和带宽的估计。数值模拟的结果表明,该方法不仅比大拇指准则方法精确,且比交叉验证方法耗时更少。与此同时,与Nadaraya-Watson估计相比,所提带宽选择方法对多元非参数模型的适应性要更好。最后,本文通过一组实际数据说明有限样本下所提贝叶斯带宽选择的表现很好。 相似文献
14.
15.
Ingrid Van Keilegom Noël Veraverbeke 《Annals of the Institute of Statistical Mathematics》1997,49(3):467-491
We study Beran's extension of the Kaplan-Meier estimator for thesituation of right censored observations at fixed covariate values. Thisestimator for the conditional distribution function at a given value of thecovariate involves smoothing with Gasser-Müller weights. We establishan almost sure asymptotic representation which provides a key tool forobtaining central limit results. To avoid complicated estimation ofasymptotic bias and variance parameters, we propose a resampling methodwhich takes the covariate information into account. An asymptoticrepresentation for the bootstrapped estimator is proved and the strongconsistency of the bootstrap approximation to the conditional distributionfunction is obtained. 相似文献
16.
This paper considers a generalization of the Dirichlet process which is obtained by suitably normalizing superposed independent
gamma processes having increasing integer-valued scale parameter. A comprehensive treatment of this random probability measure
is provided. We prove results concerning its finite-dimensional distributions, moments, predictive distributions and the distribution
of its mean. Most expressions are given in terms of multiple hypergeometric functions, thus highlighting the interplay between
Bayesian Nonparametrics and special functions. Finally, a suitable simulation algorithm is applied in order to compute quantities
of statistical interest. 相似文献
17.
18.
《Journal of computational and graphical statistics》2013,22(1):217-240
Researchers have long struggled to identify causal effects in nonexperimental settings. Many recently proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models—one for the assignment mechanism and one for the response surface. This article proposes a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonparametric modeling procedure, Bayesian Additive Regression Trees (BART). BART has several advantages: it is far simpler to use than many recent competitors, requires less guesswork in model fitting, handles a large number of predictors, yields coherent uncertainty intervals, and fluidly handles continuous treatment variables and missing data for the outcome variable. BART also naturally identifies heterogeneous treatment effects. BART produces more accurate estimates of average treatment effects compared to propensity score matching, propensity-weighted estimators, and regression adjustment in the nonlinear simulation situations examined. Further, it is highly competitive in linear settings with the “correct” model, linear regression. Supplemental materials including code and data to replicate simulations and examples from the article as well as methods for population inference are available online. 相似文献
19.
A wavelet method of detection and estimation of change points in nonparametric regression models under random design is proposed. The confidence bound of our test is derived by using the test statistics based on empirical wavelet coefficients as obtained by wavelet transformation of the data which is observed with noise. Moreover, the consistence of the test is proved while the rate of convergence is given. The method turns out to be effective after being tested on simulated examples and applied to IBM stock market data. 相似文献