首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic–linear–dendritic triblock copolymers based on poly(ethylene glycol) (PEG) as the core and dendritic triazine blocks were synthesized. The micellar and aggregation characteristics of the compounds were investigated with NMR and fluorescence spectroscopy. The NMR investigations were carried out in a variety of solvents. In those solvents in which both moieties of the linear–dendritic compounds were completely soluble, the NMR spectra of the linear–dendritic compounds were in the normal form, and all of the signals were as expected. However, in other solvents in which one of the moieties of the compounds was not very soluble, the NMR spectra of the compounds were not in the normal form, and some of the signals were broad or disappeared. The results could be related to the aggregation behavior of the block copolymers with extended or packed conformations of PEG in the solvents, as previously observed in similar systems. Also, fluorescence investigations of some of the isolated compounds in aqueous solutions displayed micellar behavior. The critical micelle concentrations of the copolymers were determined with a fluorescence technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 28–41, 2005  相似文献   

2.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

3.
Binding constants of alkali picrates to poly(ethylene oxide)-based networks were measured spectrophotometrically in dioxane at 25 and 40°C. The networks were synthesized from aliphatic tri- or tetrafunctional isocyanates and α,ω-diamino-poly-(ethylene glycol)s. The slopes of the Klotz binding plots appear to decrease in the lower picrate concentration range, suggesting that binding of the salt becomes more difficult at high picrate content. It was shown that under saturation conditions six to seven ethylene oxide units are required to bind a sodium picrate ion pair. The affinity of the PEO-resins for the alkali picrate can be enhanced by immobilizing a poly(crown ether) in the network. A number of competition experiments for sodium picrate in toluene was also carried out to obtain the affinity of soluble ligands for alkali salts. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1819–1824, 1997  相似文献   

4.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

5.
A new aliphatic poly(propylene‐co‐γ‐butyrolactone carbonate) (PPCG) was successfully synthesized through the copolymerization of carbon dioxide, propylene oxide (PO), and γ‐butyrolactone (GBL). GBL was inserted into the backbone of PO–CO2. The glass transition of PPCG was as high as 16 °C, far higher than that (?1.5 °C) of poly(propylene carbonate) (PPC). The decomposition temperatures of PPCG and PPC were only slightly different. Because of the existence of the GBL ester unit, PPCG had stronger degradability than PPC in a pH 7.4 phosphate‐buffered solution. However, when the PO/GBL ratio increased beyond 5:2, the excessive amount of GBL was not added to the polymerization. PPCG and PPC microcapsules were prepared by the water‐in‐oil‐in‐water multiple‐emulsion method. Glucose was encapsulated. The PPCG microcapsules, about 2 μm in diameter, had smooth and spherical surfaces. The glucose release test revealed that the glucose release speed of the PPCG–glucose microcapsules was more than eight times faster than that of the PPC–glucose microcapsules in a pH 7.4 phosphate‐buffered solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2468–2475, 2005  相似文献   

6.
Multistimuli responsive grafted poly(ether tert‐amine) (gPEAs), which were comprised of poly(propylene oxide) (PPO) in backbone and poly(ethylene oxide) (PEO) as grafted chain, were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100. These gPEAs exhibit very sharp response to temperature, pH and ionic strength with tunable cloud point (CP). The CP of gPEA aqueous solution increases with increasing the PEO content or decreasing pH value, varying from 27 to 77 °C. Compared with linear PEA101, gPEA110 of completely grafted structure in aqueous solution exhibits sharper response to temperature with ΔT around 1 °C. The results obtained from TEM and dynamic light scattering reveal that gPEAs are dispersed as uniform sized nano‐micelles in aqueous at room temperature, which can further aggregate into mesoglobules of complex structure at high temperature (>CP). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6353–6361, 2009  相似文献   

7.
The synthesis of well‐defined carboxylic acid‐functionalized glycopolymers prepared via one‐step postpolymerization modification of poly(N‐[3‐aminopropyl] methacrylamide) (PAPMA), a water‐soluble primary amine methacrylamide, in aqueous medium is demonstrated. PAPMA was first polymerized via aqueous reversible addition‐fragmentation chain transfer polymerization in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate as the chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501) as the initiator at 70 °C. The resulting well‐defined PAPMA was then conjugated with D ‐glucuronic acid sodium salt through reductive amination in alkaline medium (pH 8.5) at 45 °C. The successful bioconjugation was proven through proton (1H) and carbon (13C) nuclear magnetic resonance spectroscopy and matrix‐assisted laser desorption/ionization time of flight mass spectrometry analysis, which indicated near quantitative conversion. A similar bioconjugation reaction was conducted with poly(2‐aminoethyl methacrylate) (PAEMA) and poly(2‐aminoethyl methacrylate‐b‐poly(N‐[2‐hydroxypropyl]methacrylamide) (PAEMA‐b‐PHPMA). For the PAEMA homopolymers and block copolymers, however, lower conversion was obtained, most likely because of degradation reactions of PAEMA in alkaline medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3052–3061, 2010  相似文献   

8.
A series of polyester‐based poly(urethane urea) (PUU) aqueous dispersions with well‐defined hard segments were prepared from polyester polyol, 4,4′‐diphenylmethane diisocyanate, dimethylolpropionic acid, 1,4‐butanediol, isophorone diisocyanate, and ethylenediamine. These anionic‐type aqueous dispersions had good dispersity in water and were stable at the ambient temperature for more than 1 year. For these aqueous dispersions, the particle size decreased as the hard‐segment content increased, and the polydispersity index was very narrow (<1.10). Films prepared with the PUU aqueous dispersions exhibited excellent waterproof performance: the amount of water absorption was as low as 5.0 wt %, and the contact angle of water on the surface of this kind of film was as high as 103° (this led to a hydrophobic surface). The water‐resistant property of these waterborne PUU films could be well correlated with some crystallites and ordered structures of the well‐defined hard segments formed by hydrogen bonding between the urethane/urethane groups and urethane/ester groups, as well as the degree of microphase separation between the hard and soft segments in the PUU systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2606–2614, 2005  相似文献   

9.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   

10.
We reported that multiresponsive amphiphilic graft poly(ether amine)s (agPEAs) comprised of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic octadecyl alkyl chain as side‐chain were prepared through one‐pot synthesis. In aqueous solution, these obtained agPEAs can self‐assemble into stable nanomicelles, whose aggregation can be controlled by temperature, pH, and ionic strength with tunable cloud point (CP). In the presence of these obtained agPEAs, hydrophobic dye Nile red can be dispersed into aqueous solution and hydrophilic dye methyl orange can be dispersed into nonpolar toluene. The agPEAs are expected to be potential in application such as encapsulation and controlled release of drugs, due to their simple synthesis, amphiphilicity, and multistimuli response. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 327–335, 2010  相似文献   

11.
A series of well‐defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well‐defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10?3 g/L, the obtained acPEAs can self‐assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (<7.0), was observed, which was also revealed by DLS results. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3468–3475, 2010  相似文献   

12.
Multistimuli‐responsive hyperbranched poly(ether amine)s (hPEAs) were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial diglycidyl ether and amine via one‐pot synthesis. In aqueous solution, these hPEAs exhibited very sharp response to temperature, pH, and ionic strength, with well‐tunable cloud point (CP). Through changing the poly(ethylene oxide) (PEO) chain content of hPEAs, pH, and ionic strength, the CP could be adjustable from 35 to 100 °C, and increased with the increasing of PEO content, the decreasing of pH and ionic strength. The CP of hPEAs aqueous solution presents a linear relationship to the PEO content in pH range from 6.6 to 8.0. Dynamic light scattering (DLS) investigation indicated that these hPEAs dispersed in aqueous solution to form the stable nanomicelles, whose aggregation can be controlled by temperature, pH, and ionic strength. Moreover, the obtained hPEAs contain reactive amino groups in periphery and hydroxyl groups inside, which can be further functionalized. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4252–4261, 2010  相似文献   

13.
Since glycylglycine (Gly‐Gly) residue in the N‐terminal region of human prion protein, a copper binding protein, binds with Cu(II), N‐terminus Gly‐Gly side‐chain containing water soluble block copolymer was synthesized and used for simultaneous sensing and removal of Cu(II) ion from aqueous medium. The polymer has amide nitrogen atom and ester carbonyl group as potential binding sites in the side‐chain Gly‐Gly pendants. Job's plot experiment confirms 2:1 binding stoichiometry of polymer with Cu(II). This polymer is able to sense parts per billion level of Cu(II) very selectively in an aqueous medium and remove Cu(II) ions quantitatively by precipitating out the Cu(II) via complex formation in the pH range 7–9. The binding mode of polymer with Cu(II) in polymer‐Cu(II) complex was characterized by 1H NMR, FTIR, and UV–vis spectroscopy. The attachment of Cu(II) in the polymer‐Cu(II) complex was confirmed by cyclic voltammetry experiment. Cu(II) release from the complex was achieved at pH 5 due to the protonation of amide nitrogen atoms in the Gly‐Gly moiety. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 914–921  相似文献   

14.
In this paper, we report on the physicochemical characterization of hydrogels recently obtained by crosslinking poly (vinylalcohol), PVA, with telechelic PVA (telPVA, bearing terminal aldehydic groups) via acetalization in aqueous solution. These gels were studied by equilibrium swelling, compression modulus measurements, and proton relaxometry experiments. Swelling and compression modulus data allow to estimate the average molecular weight of PVA chain between crosslinks, the average mesh size of the networks, and the polymer–solvent interaction parameter χ1. The average mesh size of PVA‐telPVA compares well with domain dimensions of diffusionally confined water as detected by NMR relaxometry. Proton relaxometry also showed different network domains in which water is compartmentalized, indicating a complex heterogeneity. The study of the temperature behavior of the nuclear spin–spin relaxation times of the confined water was also considered. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1225–1233, 1999  相似文献   

15.
Amphiphilic poly(amidoamine) (PAMAM) dendrimers consisting of a hydrophilic dendrimer core and hydrophobic aromatic dansyl or 1‐(naphthalenyl)‐2‐phenyldiazene (NPD) shells have been synthesized. These amphiphilic dendrimers from the zero generation to the third generation self‐assemble into vesicular aggregates in water. The self‐assembly behavior of these dendrimers strongly depends on their generations. The generation dependence has been further investigated by an exploration of their electrochemical properties. For the PAMAM–NPD aggregates, the photoisomerization process leads to a change in the aggregate size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5512–5519, 2005  相似文献   

16.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

17.
Novel water‐soluble amphiphilic copolymers have been synthesized by free radical copolymerization of 2‐hydroxyethylacrylate with vinyl butyl ether. In water these copolymers exhibit lower critical solution temperature, which depends on the content of hydrophobic vinyl butyl ether units. The interaction between these copolymers and poly(acrylic acid) or poly(methacrylic acid) in aqueous solutions results in formation of interpolymer complexes stabilized by hydrogen bonds and hydrophobic interactions. An increase in hydrophobicity of the copolymers leads to the enhancement of their complex formation ability with respect to poly(acrylic acid) and poly(methacrylic acid). Poly(methacrylic acid) forms stronger complexes with the copolymers when compared with poly(acrylic acid). The complexes exhibit dual sensitivity to pH‐ and temperature and this property may be easily adjusted regulating the strength of interaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 195–204, 2006  相似文献   

18.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

19.
A series of hydrophobic poly(oxypropylene) (POP)‐backboned and hydrophilic poly(oxyethylene)‐backboned amidoacids and imidoacids were prepared through the reaction of poly(oxyalkylene) diamines and trimellitic anhydride (TMA) under mild conditions. The synthesized copolymers were characterized with nuclear magnetic resonance and Fourier transform infrared. Their ability to lower the water surface tension and toluene/water interfacial tension was measured and correlated with the hydrophobic/hydrophilic balance with multiple sodium carboxylate functionalities. The specific POP2000/TMA copolymers, consisting of a 2000 g/mol POP segment and multiple amidoacid functionalities, enabled the demonstration of a strong surfactant tendency and a critical micelle concentration at 0.1 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 646–652, 2006  相似文献   

20.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号