首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities under lock-in conditions are obtained and the stability of steady-state responses is discussed. Results show that the internal fluid velocity has a prominent effect on the oscillation amplitude and that the steady-state responses incorporating unstable solutions in the lock-in region are also obtained. In addition, the effects of two kinds of fluctuating lift coefficients on the steady-state responses are compared with each other.  相似文献   

2.
This paper treats nonlinear vibration of pipes conveying fluid in the supercritical regime. If the flow speed is larger than the critical value, the straight equilibrium configuration becomes unstable and bifurcates into two possible curved equilibrium configurations. The paper focuses on the nonlinear vibration around each bifurcated equilibrium. The disturbance equation is derived from the governing equation, a nonlinear integro-partial-differential equation, via a coordinate transform. The Galerkin method is applied to truncate the disturbance equation into a two-degree-of-freedom gyroscopic systems with weak nonlinear perturbations. The internal resonance may occur under the certain condition of the supercritical flow speed for the suitable ratio of mass per unit length of pipe and that of fluid. The method of multiple scales is applied to obtain the relationship between the amplitudes in the two resonant modes. The time histories predicted by the analytical method are compared with the numerical ones and the comparisons validate the analytical results when the nonlinear terms are small.  相似文献   

3.
Non-linear vibration of viscoelastic pipes conveying fluid around curved equilibrium due to the supercritical flow is investigated with the emphasis on steady-state response in external and internal resonances. The governing equation, a non-linear integro-partial-differential equation, is truncated into a perturbed gyroscopic system via the Galerkin method. The method of multiple scales is applied to establish the solvability condition in the first primary resonance and the 2:1 internal resonance. The approximate analytical expressions are derived for the frequency–amplitude curves of the steady-state responses. The stabilities of the steady-state responses are determined. The generation and the vanishing of a double-jumping phenomenon on the frequency–amplitude curves are examined. The analytical results are supported by the numerical integration results.  相似文献   

4.
Chaotic oscillations in pipes conveying pulsating fluid   总被引:1,自引:0,他引:1  
Chaotic motions of a simply supported nonlinear pipe conveying fluid with harmonie velocity fluetuations are investigated. The motions are investigated in two flow velocity regimes, one below and above the critical velocity for divergence. Analyses are carried out taking into account single mode and two mode approximations in the neighbourhood of fundamental resonance. The amplitude of the harmonic velocity perturbation is considered as the control parameter. Both period doubling sequence and a sudden transition to chaos of an asymmetric period 2 motion are observed. Above the critical velocity chaos is explained in terms of periodic motion about the equilibrium point shifting to another equilibrium point through a saddle point. Phase plane trajectories, Poincaré maps and time histories are plotted giving the nature of motion. Both single and two mode approximations essentially give the same qualitative behaviour. The stability limits of trivial and nontrivial solutions are obtained by the multiple time scale method and harmonic balance method which are in very good agreement with the numerical results.  相似文献   

5.
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration (non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity, that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second- or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.  相似文献   

6.
In this paper, the nonlinear dynamics of a pipe imperfectly supported at the upstream end and free at the other and conveying fluid is investigated. The imperfect support is modelled via cubic translational and rotational springs. The equation of motion is obtained via Hamilton’s principle for an open system, and the Galerkin method is used for discretizing the resulting partial differential equation. The dynamics of a system with either strong rotational or strong translational stiffness is examined in details. Numerical results show that similarly to a cantilevered pipe, the system undergoes a supercritical Hopf bifurcation leading to period-1 limit cycle oscillations. The Hopf bifurcation may, however, occur at a much lower flow velocity compared to the perfect system. At higher flow velocities, quasi-periodic and chaotic-like motions may be observed. The amplitude of transverse displacement is generally much higher than that for a cantilevered pipe, mainly due to large-amplitude rigid-body motion. In addition, effects of the mass ratio, internal dissipation, hardening- or softening-type nonlinearity, as well as concentrated- or distributed-type nonlinearity on the dynamics of the system are examined.  相似文献   

7.
Stability analysis of viscoelastic curved pipes conveying fluid   总被引:1,自引:0,他引:1  
Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.  相似文献   

8.
For improved stability of fluid-conveying pipes operating under the thermal environment, functionally graded materials (FGMs) are recommended in a few recent studies. Besides this advantage, the nonlinear dynamics of fluid-conveying FG pipes is an important concern for their engineering applications. The present study is carried out in this direction, where the nonlinear dynamics of a vertical FG pipe conveying hot fluid is studied thoroughly. The FG pipe is considered with pinned ends while the internal hot fluid flows with the steady or pulsatile flow velocity. Based on the Euler–Bernoulli beam theory and the plug-flow model, the nonlinear governing equation of motion of the fluid-conveying FG pipe is derived in the form of the nonlinear integro-partial-differential equation that is subsequently reduced as the nonlinear temporal differential equation using Galerkin method. The solutions in the time or frequency domain are obtained by implementing the adaptive Runge–Kutta method or harmonic balance method. First, the divergence characteristics of the FG pipe are investigated and it is found that buckling of the FG pipe arises mainly because of temperature of the internal fluid. Next, the dynamic characteristics of the FG pipe corresponding to its pre- and post-buckled equilibrium states are studied. In the pre-buckled equilibrium state, higher-order parametric resonances are observed in addition to the principal primary and secondary parametric resonances, and thus the usual shape of the parametric instability region deviates. However, in the post-buckled equilibrium state of the FG pipe, its chaotic oscillations may arise through the intermittent transition route, cyclic-fold bifurcation, period-doubling bifurcation and subcritical bifurcation. The overall study reveals complex dynamics of the FG pipe with respect to some system parameters like temperature of fluid, material properties of FGM and fluid flow velocity.  相似文献   

9.
Javadi  M.  Noorian  M. A.  Irani  S. 《Meccanica》2019,54(14):2081-2098
Meccanica - Nonlinear forced vibrations of a fractional viscoelastic pipe conveying fluid exposed to the time-dependent excitations is investigated in the present work. Attention is focused in...  相似文献   

10.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability ...  相似文献   

11.
Javadi  M.  Noorian  M. A.  Irani  S. 《Meccanica》2019,54(3):399-410

Divergence and flutter instabilities of pipes conveying fluid with fractional viscoelastic model has been investigated in the present work. Attention is concentrated on the boundaries of the stability. Based on the Euler–Bernoulli beam theory for structural dynamics, viscoelastic fractional model for damping and, plug flow model for fluid flow, equation of motion has been derived. The effects of gravity, and distributed follower forces are also considered. By transferring the equation of motion to the Laplace domain and using the Galerkin method, the characteristic equations are obtained. By solving the eigenvalue problem, frequencies and dampings of the system have been obtained versus flow velocity. Some numerical test cases have been studied with viscoelastic fractional model and the effect of the fractional derivative order and the retardation time is investigated for various boundary conditions.

  相似文献   

12.
粘弹性地基上粘弹性输流管道的稳定性分析   总被引:1,自引:0,他引:1  
从Winkler假设和单轴线性粘弹性本构方程出发,推导了Kelvin-Voigt粘弹性地基上三参量固体模型输流管道的运动微分方程,采用改进的有限差分法,分析了管道和地基的粘弹性参数对输流管道无量纲复频率和无量纲流速之间的变化关系的影响。  相似文献   

13.
Based on the generalized Hamilton’s principle, the nonlinear governing equation of an axially functionally graded(AFG) pipe is established. The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method, the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM). The influence of Young’s modulus gradient on the parametric r...  相似文献   

14.
15.
IntroductionFluidinducedvibrationexistsinmanyengineeringfields.Thevibrationandstabilityofpipeconveyingfluidisatypicalexample.Manyscholarsathomeandabroadhavealwaysbeeninterestedinthissubjectandmadealotofstudiesofit.Particularlyduringrecentdecades,somere…  相似文献   

16.
基于WDQ法的粘弹性输流管道稳定性分析   总被引:1,自引:0,他引:1  
在微分求积法(DQ法)基础上,根据多分辨分析理论,以尺度函数为基础构造插值基函数,形成小波微分求积法(WDQ法),用该方法研究了简支Kelvin型粘弹性输流管道的稳定性问题,给出了不同参数下管道复频率随内部流速的变化关系,分析了外部流速对Kelvin型粘弹性输流管道在不同延滞时间下的振动特性及稳定性的影响。  相似文献   

17.
Previous analytical work on stability of fluid-conveying pipes assumed a uniform velocity profile for the conveyed fluid. In real fluid flows, the presence of viscosity leads to a sheared region near the wall. Earlier studies correctly note that viscous forces do not affect the dynamics of the system since these forces are balanced by pressure drop in the conveyed fluid. Although viscous shear has not been ignored in these studies, a uniform velocity profile assumes that the sheared region is infinitely thin. Prior analysis was extended to account for a fully developed non-uniform profile such as would be encountered in real fluid flows. A modified, highly tractable equation of motion was derived, which includes a single additional parameter to account for the true momentum of the fluid. This empirical parameter was determined by numerical analysis over the Reynolds number range of interest. The stability of cantilever pipes conveying fluid with two types of non-uniform velocity profile was assessed. In the first case, the profile was a function of Reynolds number and transition to turbulence occurred before the onset of flutter instability. This case had stability properties similar to the uniform velocity case except in specific narrow regions of the parameter space. The second case required that the Reynolds number be such that the flow was always laminar. For this case, lower fluid velocity was required to achieve instability, and the oscillation frequency at instability was considerably lower over much of the parameter space, compared to the uniform case.  相似文献   

18.
傅里叶级数法被用于计算输液管道的临界流速,与有限元等数值法相比,更为简单可靠。  相似文献   

19.
In this paper, the nonlinear responses of a loosely constrained cantilevered pipe conveying fluid in the context of three-dimensional (3-D) dynamics are investigated. The pipe is allowed to oscillate in two perpendicular principal planes, and hence its 3-D motions are possible. Two types of motion constraints are considered. One type of constraints is the tube support plate (TSP) which comprises a plate with drilled holes for the pipe to pass through. A second type of constraints consists of two parallel bars (TPBs). The restraining force between the pipe and motion constraints is modeled by a smoothened-trilinear spring. In the theoretical analysis, the 3-D version of nonlinear equations is discretized via Galerkin’s method, and the resulting set of equations is solved using a fourth-order Runge–Kutta integration algorithm. The dynamical behaviors of the pipe system for varying flow velocities are presented in the form of bifurcation diagrams, time traces, power spectra diagrams and phase plots. Results show that both types of motion constraints have a significant influence on the dynamic responses of the cantilevered pipe. Compared to previous work dealing with the loosely constrained pipe with motions restricted to a plane, both planar and non-planar oscillations are explored in this 3-D version of pipe system. With increasing flow velocity, it is shown that both periodic and quasi-periodic motions can occur in the system of a cantilever with TPBs constraints. For a cantilevered pipe with TSP constraints, periodic, chaotic, quasi-periodic and sticking behaviors are detected. Of particular interest of this work is that quasi-periodic motions may be induced in the pipe system with either TPBs or TSP constraints, which have not been observed in the 2-D version of the same system. The results obtained in this work highlight the importance of consideration of the non-planar oscillations in cantilevered pipes subjected to loose constraints.  相似文献   

20.
The first-order non-linear interactions between the pipe structure and the flowing fluid are considered to formulate the governing equations of motion for the in-plane vibration of a circular-arc pipe containing flowing fluid. The forces and moments induced in a pipe element by the flowing fluid are analyzed as functions of the instantaneous local curvature of the pipe. The flow field is assumed to be one-dimensional, incompressible and of uniform flow, and to remain independent of pipe motion. For a fixed-end circular-arc pipe with arbitrary arc angle, the non-linear governing equations are solved by the method of multiple scales in conjunction with the Bubnov-Galerkin method. The non-linear solutions indicate that the vibrational behavior of the system can differ substantially from that predicted by a linear analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号