首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow above the free end of a surface-mounted finite-height cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Velocity measurements were made in vertical and horizontal measurement planes above the free end of finite cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2 × 104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. Flow separating from the leading edge formed a prominent recirculation zone on the free-end surface. The legs of the mean arch vortex contained within the recirculation zone terminate on the free-end surface on either side of the centreline. Separated flow from the leading edge attaches onto the upper surface of the cylinder along a prominent attachment line. Local separation downstream of the leading edge is also induced by the reverse flow and arch vortex circulation within the recirculation zone. As the cylinder aspect ratio is lowered from AR = 9 to AR = 3, the thickness of the recirculation zone increases, the arch vortex centre moves downstream and higher above the free-end surface, the attachment position moves downstream, and the termination points of the arch vortex move upstream. A lowering of the aspect ratio therefore results in accentuated curvature of the arch vortex line. Changes in aspect ratio also influence the vorticity generation in the near-wake region and the shape of the attachment line.  相似文献   

2.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

3.
In this research, direct numerical simulation has been performed to study the turbulent wake behind a wall-mounted square cylinder with aspect ratio 4 and Reynolds number 12 000 (based on the free-stream velocity and obstacle side length) in a developing boundary layer. Owing to the relatively high Reynolds number and high aspect ratio of the cylinder tested, the wake is wide spread behind the cylinder and exhibits complex and energetic vortex motions. The lateral and tip vortex shedding patterns at different frequencies, coherent structures downstream of the obstacle, the production rate and distribution of turbulent kinetic energy, and the instantaneous pressure distribution in the wake region have been thoroughly investigated. In order to validate the numerical results, the first- and second-order flow statistics obtained from the simulations have been carefully compared against available wind-tunnel measurement data.  相似文献   

4.
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical solution of the unsteady Navier–Stokes equations. Vortex shedding behind the cylinder induces periodicity in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow structure.  相似文献   

5.
The interaction of a given two-dimensional vorticity distribution with a circular cylinder is analyzed by comparing the numerical solutions provided by an inviscid and by a viscous approach. While the vorticity dynamics of high Reynolds flows in free space shows an almost inviscid behavior, at least in the starting phase, this is not the case in the presence of a solid wall where a considerable effect of viscosity is experienced since the initial stage of the evolution. In fact, the vorticity generation process at the wall may significantly influence the overall flow field even in the case of a weak interaction.A multilevel contour dynamics technique plus a vortex sheet at the body surface are introduced to study the inviscid evolution, while a viscous vortex method has been adopted for the solution of the complete Navier-Stokes equations. An energy-like relation involving forces and other global quantities of the flow is proposed together with its use as a way to control the accuracy of the numerical solution.The numerical simulation of a vorticity patch orbiting around a circular cylinder gives an interesting source of information for the study of unsteady separation providing, at the same time, a proper test to devise a simplified model within the limit of vanishing viscosity.
Sommario In questo lavoro si studia l'interazione di una distribuzione bidimensionale di vorticità con un cilindro circolare confrontando tra loro la soluzione numerica ottenuta dalle equazioni di Navier-Stokes con quella relativa ad un modello basato sull'ipotesi di fluido non viscoso. La dinamica di strutture vorticose nello spazio libero ad alti Reynolds ha un carattere prevalentemente non viscoso, per lo meno nella fase iniziale. Invece la presenza di una parete solida introduce nel campo nuova vorticità e di conseguenza rende importanti gli effetti viscosi già dai primi istanti dell'evoluzione anche nel caso di interazione debole.Per ottenere la soluzione in assenza di viscosità è stata utilizzata una metodologia di soluzione numerica basata sullaContour Dynamics insieme ad una discontinuità della velocità tangenziale sulla parete. La soluzione delle equazioni di Navier-Stokes è invece ottenuta con un modello viscoso a vortici. Si ricava una relazione di tipo energetico tra le forze agenti sul corpo ed altre grandezze globali del campo fluidodinamico che viene utilizzata per il controllo dell'accuratezza della soluzione numerica.La simulazione numerica del moto di una distribuzione di vorticità, inizialmente uniforme, in prossimità di un cilindro circolare, mentre permette di studiare più approfonditamente i fenomeni connessi alla separazione non stazionaria dello strato limite, offre, nel contempo, uno strumento appropriato per individuare un modello semplificato per viscosità tendente a zero.
  相似文献   

6.
7.
8.
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively started and decelerated flows. The impulsively started problem was considered to validate the method and has yielded results which agree quite closely with existing results from both calculations and experiments. The decelerated flow analysis produced results which can be explained in terms of induced velocity effects from existing wake vortices for both suddenly stopped and uniformly decelerated flows.  相似文献   

9.
Flow dynamics, in-line and transverse forces exerted on an oscillating circular cylinder in a fluid initially at rest are studied by numerical resolution of the two-dimensional Navier-Stokes equations. The Keulegan-Carpenter number is held constant at KC=10 and Re is increased from 40 to 500. For the different flow regimes, links between flow spatio-temporal symmetries and force histories are established. Besides simulations of long duration show that in two ranges of Re, forces exhibit low frequency fluctuations compared to the cylinder oscillation frequency. Such observations have been only mentioned in the literature and are more deeply examined here. In both ranges, force fluctuations correspond to oscillations of the front and rear stagnation points on the cylinder surface. However, they occur in flow regimes whose basic patterns (V-shaped mode or diagonal mode) have different symmetry features, inducing two distinct behaviors. For 80≤Re≤100, fluctuations are related to a spectral broadening of the harmonics and to a permutation between three vortex patterns (V-shaped, transverse and oblique modes). In the second range 150≤Re≤280, amplitude fluctuations are correlated to the appearance of low frequency peaks interacting with harmonics of the cylinder frequency. Fluctuations are then a combination of a wavy fluctuation and an amplitude modulation. The carrier frequency corresponding to the wavy fluctuation depends on Re and is related to a fluid characteristic time; the modulation frequency is independent of Re and equal to 1/4 of the cylinder oscillation frequency.  相似文献   

10.
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.  相似文献   

11.
On the topological bifurcation of flows around a rotating circular cylinder   总被引:1,自引:0,他引:1  
Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Reslts show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds numberRe and rotation parameter α, is built by a kinematic analysis of the steady flow fields. The project supported by the National Natural Science Foundation of China  相似文献   

12.
This paper numerically investigates the effectiveness of the control of steady suction on a stationary circular cylinder with several isolated suction holes on the surface at a subcritical Reynolds number. The control effectiveness as a function of the azimuthal position, spanwise spacing and suction flow rate of the suction holes on the control of the aerodynamic forces on the cylinder and the suppression of alternate vortex shedding are taken into account. The study of the azimuthal location of the suction holes indicates that azimuthal angles of θ=90° and 270°, which are close to the separation point, provide the most substantial decreases in the aerodynamic forces. When restricted to the most effective azimuthal angle, a remarkable control effectiveness can be achieved when the axial spacing between two neighboring suction holes is less than a minimum value even under a small suction momentum coefficient. However, if the axial spacing exceeds the minimum spacing, the control effectiveness will not be saturated even under a very large suction momentum coefficient. Thus, the cause of the effective aerodynamic force control is suggested to be a result of obvious three-dimensional phenomenon in the near wake, which is characterized by the generation of a convergent flow between two neighboring suction hole sections and a stronger, larger three-dimensional vortex pair adjacent to the convergent flow. It has been suggested that this strongly three-dimensional flow pattern is induced by the strong interaction between two neighboring but counter-rotating three-dimensional vortices separately produced by two neighboring suction holes. Moreover, the effects of such three-dimensional flow patterns are investigated in detail based on variations in the flow field and sectional aerodynamic forces in different cross sections. Finally, the upper limit of the axial spacing between two neighboring suction holes to form such a three-dimensional flow pattern is suggested to be between 0.75 D and 1.5 D when the suction flow rate exceeds a certain value.  相似文献   

13.
In this paper, hydrodynamic force coefficients and wake vortex structures of uniform flow over a transversely oscillating circular cylinder beneath a free surface were numerically investigated by an adaptive Cartesian cut-cell/level-set method. At a fixed Reynolds number, 100, a series of simulations covering three Froude numbers, two submergence depths, and three oscillation amplitudes were performed over a wide range of oscillation frequency. Results show that, for a deeply submerged cylinder with sufficiently large oscillation amplitudes, both the lift amplitude jump and the lift phase sharp drop exist, not accompanied by significant changes of vortex shedding timing. The near-cylinder vortex structure changes when the lift amplitude jump occurs. For a cylinder oscillating beneath a free surface, larger oscillation amplitude or submergence depth causes higher time-averaged drag for frequency ratio (=oscillation frequency/natural vortex shedding frequency) greater than 1.25. All near-free-surface cases exhibit negative time-averaged lift the magnitude of which increases with decreasing submergence depth. In contrast to a deeply submerged cylinder, occurrences of beating in the temporal variation of lift are fewer for a cylinder oscillating beneath a free surface, especially for small submergence depth. For the highest Froude number investigated, the lift frequency is locked to the cylinder oscillation frequency for frequency ratios higher than one. The vortex shedding mode tends to be double-row for deep and single-row for shallow submergence. Proximity to the free surface would change or destroy the near-cylinder vortex structure characteristic of deep-submergence cases. The lift amplitude jump is smoother for smaller submergence depth. Similar to deep-submergence cases, the vortex shedding frequency is not necessarily the same as the primary-mode frequency of the lift coefficient. The frequency of the induced free surface wave is exactly the cylinder oscillation frequency. The trends of wave length variation with the Froude number and frequency ratio agree with those predicted by the linear theory of small-amplitude free surface waves.  相似文献   

14.
圆柱绕流流场结构的大涡模拟研究   总被引:2,自引:0,他引:2  
郝鹏  李国栋  杨兰  陈刚 《应用力学学报》2012,29(4):437-443,487,488
为进一步揭示绕流现象的形成机理,本文分别对处于层流稳态区、尾流过渡区、剪切层转换区Re分别为26、200、1.4×105的三种典型流态下的单圆柱绕流进行了二维数值模拟研究。Re为26时应用层流模型直接求解N-S方程,而Re分别为200、1.4×105时使用大涡模拟的方法进行计算。数值模拟很好地再现了稳定的涡旋结构、周期性交替脱落的卡门涡街结构、不规则的涡旋结构,在此基础上分析了尾流结构的基本特征及其压强分布规律、平均的流场特性、积分参数(如升力系数、阻力系数、斯特劳哈尔等),并与有关研究成果进行了对比。研究发现,采用不同流动介质时流场特性有所差异,空气为介质时的计算结果更符合实验的成果,而水为介质时计算结果偏差较大,这主要是由尾流涡旋产生的不合理负压造成的。  相似文献   

15.
Direct numerical simulation is used to study the loading of a rigid, circular cylinder impacted by a 2D vortex. The vortex travels within a stream of fluid characterized by Reynolds number of 150. Vortex impact occurs at twenty-five different times within one vortex shedding cycle. Substantial variation is observed in the maximum values of the drag and lift force coefficients. This variation is due to interaction between the impinging vortex and those attached to the cylinder. As the radius of the impinging vortex is increased from one to three times the cylinder’s diameter, the variation in maximum force coefficients with time of impact decreases. The variation decreases because the larger vortex alters the flow field and vortex shedding cycle prior to impacting the cylinder. For structures impacted by a vortex similar in size, significant under-prediction of the maximum loading may occur if variation in loading with vortex impact time is not considered.  相似文献   

16.
Effects of surface roughness on the unsteady cavitating flow around a two-dimensional circular cylinder were experimentally investigated at Reynolds numbers from 1.36 × 105 to 1.78 × 105. Two patterns of surface roughness were investigated, a double-cut pattern and a single-cut pattern. The cavity elongates with an increase of the surface roughness, especially in supercavitating flow. However, for some roughness parameters tested, the cavity length exhibits an extreme decrease. In a particular case of the double-cut pattern, there exists the minimum cavity behind the cylinder.  相似文献   

17.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

18.
19.
The compressibility effect on the cylinder drag reduction due to air suction through the surface of a central body in a circular vortex cell is estimated on the basis of the solution of the steady Reynolds equations closed by the shear stress transfer model, together with the continuity, energy, and state equations.  相似文献   

20.
The effect of the blockage on vortex‐induced vibrations of a circular cylinder of low non‐dimensional mass (m*=10) in the laminar flow regime is investigated in detail. A stabilized space–time finite element formulation is utilized to solve the incompressible flow equations in primitive variables form in two dimensions. The transverse response of the cylinder is found to be hysteretic at both ends of synchronization/lock‐in region for 5% blockage. However, for the 1% blockage hysteresis occurs only at the higher Re end of synchronization/lock‐in region. Computations are carried out at other blockages to understand its effect on the hysteretic behavior. The hysteresis loop at the lower Re end of the synchronization decreases with decrease in blockage and is completely eliminated for blockage of 2.5% and less. On the other hand, hysteresis persists for all values of blockage at the higher Re end of synchronization/lock‐in. Although the peak transverse oscillation amplitude is found to be same for all blockage (~0.6D), the peak value of the aerodynamic coefficients vary significantly with blockage. The r.m.s. values show lesser variation with blockage. The effect of streamwise extent of computational domain on hysteretic behavior is also studied. The phase between the lift force and transverse displacement shows a jump of almost 180° at, approximately, the middle of the synchronization region. This jump is not hysteretic and is independent of blockage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号