首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

2.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

3.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

4.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

5.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

6.
Polymerization of N‐(2‐phenylethoxycarbonyl)methacrylamide (PECMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was investigated in tetrahydrofuran (THF) kinetically and by means of electron spin resonance (ESR). The overall activation energy of the polymerization was calculated to be 58 kJ/mol. The initial polymerization rate (Rp) is expressed by Rp = k[MAIB]0.3[PECMA]2.3 at 60 °C. Such unusual kinetics may be ascribable to primary radical termination and to acceleration of propagation due to monomer association. Propagating poly(PECMA) radical was observed as a 13‐line spectrum by ESR under practical polymerization conditions. ESR‐determined rate constants of propagation (kp, 4.7–10.5 L/mol s) and termination (kt, 4.6 × 104 L/ml s) at 60 °C are much lower than those of methacrylamide and methacrylate esters. The Arrhenius plots of kp and kt gave activation energies of propagation (24 kJ/mol) and termination (25 kJ/mol). The copolymerizations of PECMA with styrene (St) and acrylonitrile were examined at 60 °C in THF. Copolymerization parameters obtained for the PECMA (M1) − St(M2) system are as follows: r1 = 0.58, r2 = 0.60, Q1 = 0.73, and e1 = +0.22. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4264–4271, 2000  相似文献   

7.
The polymerization of o-(1,3-dioxolan-2-yl)phenyl ethyl fumarate (DOPEF) initiated with dimethyl 2,2′-azobisiso-butyrate (MAIB) was studied kinetically in benzene. The polymerization rate (Rp) at 60°C was given by Rp = k [MAIB]0.76 [DOPEF]0.71. The overall activation energy of polymerization was calculated to be 98.3 kJ/mol. The number-average molecular weight of resulting poly(DOPEF) was in the range of 1000–3100. 1H- and 13C-NMR spectra of resulting polymers revealed that the radical polymerization of DOPEF proceeds in a complicated manner involving vinyl addition, intramolecular hydrogen abstraction, and further ring opening of the cyclic acetal at higher temperatures. From the copolymerization of DOPEF (M1) and styrene (St) (M2) at 60°C, the monomer reactivity ratios were obtained to be r1 = 0.02 and r2 = 0.20, the values of which are similar to those of the copolymerization of ethyl o-formylphenyl fumarate and St. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 563–572, 1998  相似文献   

8.
Vinyl thiocyanatoacetate (VTCA) was synthesized, and its radical polymerization behavior was studied in acetone with dimethyl 2,2′‐azobisisobutyrate (MAIB) as an initiator. The initial polymerization rate (Rp) at 60 °C was expressed by Rp = k[MAIB]0.6±0.1 [VTCA]1.0±0.1 where k is a rate constant. The overall activation energy of the polymerization was 112 kJ/mol. The number‐average molecular weights of the resulting poly (VTCA)s (1.4–1.6 × 104) were almost independent of the concentrations of the initiator and monomer, indicating chain transfer to the monomer. The chain‐transfer constant to the monomer was estimated to be 9.6 × 10?3 at 60 °C. According to the 1H and 13C NMR spectra of poly (VTCA), the radical polymerization of VTCA proceeded through normal vinyl addition and intramolecular transfer of the cyano group. The cyano group transfer became progressively more important with decreasing monomer concentration. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 573–582, 2002; DOI 10.1002/pola.10137  相似文献   

9.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

10.
Trimethoxyvinylsilane (TMVS) was quantitatively polymerized at 130 °C in bulk, using dicumyl peroxide (DCPO) as initiator. The polymerization of TMVS with DCPO was kinetically studied in dioxane by Fourier transform near‐infrared spectroscopy. The overall activation energy of the bulk polymerization was estimated to be 112 kJ/mol. The initial polymerization rate (Rp) was expressed by Rp = k[DCPO]0.6[TMVS]1.0 at 120 °C, being closely similar to that of the conventional radical polymerization involving bimolecular termination. The polymerization system involved electron spin resonance (ESR) spectroscopically observable polymer radicals under the actual polymerization conditions. ESR‐determined apparent rate constants of propagation and termination were 13 L/mol s and 3.1 × 104 L/mol s at 120 °C, respectively. The molecular weight of the resulting poly(TMVS)s was low (Mn = 2.0–4.4 × 103), because of the high chain transfer constant (Cmtr = 4.2 × 10?2 at 120 °C) to the monomer. The bulk copolymerization of TMVS (M1) and vinyl acetate (M2) at 120 °C gave the following copolymerization parameters: rl = 1.4, r2 = 0.24, Q1 = 0.084, and e1 = +0.80. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5864–5871, 2005  相似文献   

11.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

12.
Methyl benzyloxyiminoacetate (MBOIA), a glyoxylic oxime ether, revealed different behaviors depending on the kinds of monomers used in the radical polymerization. MBOIA served as a retarder for styrene (St) and an inhibitor for vinyl acetate, whereas it showed little effect on the polymerization of methyl methacrylate. The retardation effect of MBOIA on the polymerization of St with dimethyl 2,2′‐azobisisobutyrate (MAIB) was examined in detail in benzene. The rate constant (kx) of the reaction of MBOIA with polystyrene (PS) radical was 92 L/mol s at 50 °C, 112 L/mol s at 60 °C, and 143 L/mol s at 70 °C, indicating that the reactivity of MBOIA toward PS radical is less than that of St by a factor of about 3. The Arrhenius plot of kx gave an activation energy of 20.3 kJ/mol. A nitrogen‐centered radical of a stationary state was observed by electron spin resonance (ESR) in the polymerization of St with MAIB at 60 °C in benzene in the presence of MBOIA, which is assignable to the radical (MBOIA ·) formed by addition of PS radical to MBOIA. The stationary MBOIA · concentration increased with increasing MBOIA concentration and then tended to be saturated at high concentrations. The rate constant of termination between MBOIA · radicals was 1.87 × l05 L/mol s at 60 °C with ESR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2772–2781, 2002  相似文献   

13.
The copolymerization of divinylbenzene (DVB) and ethylstyrene (EtSt) was carried out at 70 and 80 °C in benzene with dimethyl 2,2‐azobisisobutyrate (MAIB) at high concentrations as initiator in the presence of methyl benzyloxyiminoacetate (MBOIA), a glyoxylic oxime ether, as a retarder. The copolymerization system of DVB (0.25 mol/L), EtSt (0.25 mol/L), MBOIA (0.5 mol/L), and MAIB (0.5 mol/L) gave benzene‐soluble copolymers despite a considerably high concentration of DVB as an excellent crosslinker. The yield and molecular weight of the resulting copolymers increased with time both at 70 and 80 °C and then leveled off because of initiator consumption. The homogeneous polymerization system involved electron spin resonance (ESR), observable nitrogen‐centered polymer radicals (MBOIA·) under the actual polymerization conditions. The MBOIA· concentration increased with time despite a homogeneous polymerization system, suggesting the formation of rigid hyperbranched polymers. A benzene solution of isolated copolymer also showed an ESR signal. The copolymer was soluble in acetone, toluene, chloroform, ethyl acetate, tetrahydrofuran, and N,N‐dimethylformamide but insoluble in n‐hexane, methanol, and dimethyl sulfoxide. MAIB fragments as high as 30–40 mol % were incorporated into the copolymers through initiation and primary radical termination, on the basis of which this polymerization was named the initiator‐fragment incorporation radical polymerization. MBOIA (13–16 mol%) was also incorporated into the copolymers through an opening of the C?N bond. The intrinsic viscosity of the copolymers was very low (0.08 dL/g), and the reduced viscosity was almost independent of the polymer concentration, supporting a hyperbranched structure of them. Gel permeation chromatography and multi‐angle laser light scattering and transmission electron microscopy revealed that the copolymer was formed as a hyperbranched nanoparticle. The thermal behavior of the copolymer was examined by dynamic thermogravimetry and differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3038–3047, 2003  相似文献   

14.
The polymerization of α‐N‐(α′‐methylbenzyl) β‐ethyl itaconamate derived from racemic α‐methylbenzylamine (RS‐MBEI) by initiation with dimethyl 2,2′‐azobisisobutyrate (MAIB) was studied in methanol kinetically and with ESR spectroscopy. The overall activation energy of polymerization was calculated to be 47 kJ/mol, a very low value. The polymerization rate (Rp ) at 60 °C was expressed by Rp = k[MAIB]0.5±0.05[RS‐MBEI]2.9±0.1. The rate constants of propagation (kp ) and termination (kt ) were determined by ESR. kp was very low, ranging from 0.3 to 0.8 L/mol s, and increased with the monomer concentration, whereas kt (4–17 × l04 L/mol s) decreased with the monomer concentration. Such behaviors of kp and kt were responsible for the high dependence of Rp on the monomer concentration. Rp depended considerably on the solvent used. S‐MBEI, derived from (S)‐α‐methylbenzylamine, showed somewhat lower homopolymerizability than RS‐MBEI. The kp value of RS‐MBEI at 60 °C in benzene was 1.5 times that of S‐MBEI. This was explicable in terms of the different molecular associations of RS‐MBEI and S‐MBEI, as analyzed by 1H NMR. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4137–4146, 2000  相似文献   

15.
The copolymerization of p-tert-butoxystyrene (TBOSt) (M1) and di-n-butyl maleate (DBM) (M2) with dimethyl 2,2′-azobisisobutyrate (MAIB) in benzene at 60°C was studied kinetically and by means of ESR spectroscopy. The monomer reactivity ratios were determined to be r1 = 2.3 and r2 = 0 by a curve-fitting method. The copolymerization system was found to involve ESR-observable propagating polymer radicals under practical copolymerization conditions. The apparent rate constants of propagation (kp) and termination (kt) at different feed compositions were determined by ESR. From the relationship of kp and f1 (f1 = [M1]/([M1] + [M2])) based on a penultimate model, the rate constants of five propagations of copolymerization were evaluated as follows; k111 = 140 L/mol s, k211 = 3.5 L/mol s, k112 = 61 L/mol s, k212 = 1.5 L/mol s, and k121 = 69 L/mol s. Thus, a pronounced penultimate effect was predicted in the copolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1449–1455, 1998  相似文献   

16.
The polymerizations of α‐ethyl β‐N‐(α′‐methylbenzyl)itaconamates carrying (RS)‐ and (S)‐α‐methylbenzylaminocarbonyl groups (RS‐EMBI and S‐EMBI) with dimethyl 2,2′‐azobisisobutyrate (MAIB) were studied in methanol (MeOH) and in benzene kinetically and with electron spin resonance (ESR) spectroscopy. The initial polymerization rate (Rp) at 60 °C was given by Rp = k[MAIB]0.58 ± 0.05[RS‐EMBI]2.4 ± 0.l and Rp = k[MAIB]0.61 ± 0.05[S‐EMBI]2.3 ± 0.l in MeOH and Rp = k[MAIB]0.54 ± 0.05[RS‐EMBI]1.7 ± 0.l in benzene. The rate constants of initiation (kdf), propagation (kp), and termination (kt) as elementary reactions were estimated by ESR, where kd is the rate constant of MAIB decomposition and f is the initiator efficiency. The kp values of RS‐EMBI (0.50–1.27 L/mol s) and S‐EMBI (0.42–1.32 L/mol s) in MeOH increased with increasing monomer concentrations, whereas the kt values (0.20?7.78 × 105 L/mol s for RS‐EMBI and 0.18?6.27 × 105 L/mol s for S‐EMBI) decreased with increasing monomer concentrations. Such relations of Rp with kp and kt were responsible for the unusually high dependence of Rp on the monomer concentration. The activation energies of the elementary reactions were also determined from the values of kdf, kp, and kt at different temperatures. Rp and kp of RS‐EMBI and S‐EMBI in benzene were considerably higher than those in MeOH. Rp of RS‐EMBI was somewhat higher than that of S‐EMBI in both MeOH and benzene. Such effects of the kinds of solvents and monomers on Rp were explicable in terms of the different monomer associations, as analyzed by 1H NMR. The copolymerization of RS‐EMBI with styrene was examined at 60 °C in benzene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1819–1830, 2003  相似文献   

17.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The polymerization of benzyl N-(2,6-dimethylphenyl)itaconamate (BDMPI) with benzoyl peroxide (BPO) in N,N-dimethylformamide (DMF) was studied kinetically by ESR. The polymerization rate (Rp) at 70°C was given by Rp = k[BPO]0.78[BDMPI]1.1. The overall activation energy of polymerization was determined to be 83.7 kJ/mol. The number-average molecular weight of poly(BDMPI) was in the range of 1500–2000 by gel permeation chromatography. From the ESR study, the polymerization system was found to involve ESR-observable propagating radicals of BDMPI under practical polymerization conditions. Using the polymer radical concentration by ESR, the rate constants of propagation (kp) and termination (kt) were determined in the temperature range of 50–70°C. The kp value seemed dependent on the chain-length of propagating radical. The analysis of polymers by the MALDI-TOF mass spectrometry suggested that most of the resulting polymers contain the dimethylamino terminal group. The copolymerization of BDMPI (M1) and styrene (M2) at 50°C in DMF gave the following copolymerization parameters; r1 = 0.49, r2 = 0.26, Q1 = 1.2, and e1 = +0.63. The thermal behavior of poly(BDMPI) was examined by dynamic thermogravimetry and differential scanning calorimetry. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1891–1900, 1997  相似文献   

19.
Norbornene polymerization using the commercially available and inexpensive catalyst system, cyclopentadienylzirconium trichloride (CpZrCl3) and isobutyl‐modified methylaluminoxane (MMAO), were carried out over a wide range of polymerization temperatures and monomer concentrations. For the CpZrCl3 catalyst system activated by aluminoxane with a 40 mol % methyl group and a 60 mol % isobutyl group (MMAO40/60), the polymerization temperature and monomer concentration significantly affected the molecular weight (Mn) of the obtained polymer and the catalytic activity. With an increase in the polymerization temperature from 0 to 27 °C, the catalytic activity and Mn increased, but these values dramatically decreased with the increasing polymerization temperature from 27 to 70 °C, meaning that the most suitable temperature was 27 °C. The CpZrCl3/MMAO40/60 ([Al]/[Zr] = 1000) catalyst system with the [NB] of 2.76 mol L?1 at 27 °C showed the highest activity of 145 kg molZr?1 h?1 and molecular weight of 211,000 g mol?1. The polymerization using the CpZrCl3/MMAO40/60 catalyst system proceeds through the vinyl addition mechanism to produce atactic polynorbornene, which was soluble in chloroform, toluene, and 1,2‐dichlorobenzene, but insoluble in methanol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1185–1191, 2008  相似文献   

20.
Cobalt porphyrin complex (TPPCoIIIX) (TPP = 5, 10, 15, 20‐Tetraphenyl‐ porphyrin; X = halide) in combination with ionic organic ammonium salt was used for the regio‐specific copolymerization of propylene oxide and carbon dioxide. A turnover frequency of 188 h?1 was achieved after 5 h, and the byproduct propylene carbonate was successfully controlled to below 1%, where the obtained poly(propylene carbonate) (PPC) showed number average molecular weight (Mn) of 48 kg/mol, head‐to‐tail content of 93%, and carbonate linkage of over 99%. When the polymerization time was prolonged to 24 h, PPC with Mn over 115 kg/mol and head‐to‐tail linkage maintaining 90% was prepared, whose glass transition temperature reached 44.5 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5959–5967, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号