首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, numerical solution of the two-dimensional unsteady Navier-Stokes equations is used to study the forced shear flow induced by a spoiler's periodical up and down oscillation on a flat plate. The paper studies the evolution of growing, shedding, merging and decaying of vortices due to the spoiler's oscillation, particularly the dependence of the forced shear flow on the reduced frequency. Results show that the reduced frequency is a key factor in controlling the growing and the shedding of vortices in the shear layer. The instantaneous streamlines and the equi-vorticity contours, as well as the surface pressure distributions, have also been investigated. Numerical results agree well with corresponding experimental ones. The study is helpful for understanding the physical mechanism of shear flow control.  相似文献   

2.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

3.
A detail study involving flow visualization, Laser Doppler Velocimeter (LDV) measurements and numerical prediction is presented. The visualization experiments revealed striking results of a pulsatile motion in the separated flow region associated with the formation and passage of large eddy structures. Measurements of mean velocities and turbulence intensity profiles across the separated flow field, provided information about the separated shear layer development and the recirculating flow pattern. The numerical predictions, obtained with a two-layer turbulence model in conjunction with the SIMPLE algorithm, failed to reproduce the coherent eddies and the pulsatile motion, but the mean velocities are reasonably reproduced.  相似文献   

4.
Summary Compared to the similar pressure-distribution cone-and-plate apparatus of Adams and Lodge (4), the new apparatus' improvements include: temperature control of the cone (as well as the plate); increased stiffening of the frame; four (not three) pressuremeasuring holes in the cone/plate region; inclusion of a pressure-measuring hole on the axis under the cone truncation; exclusive use of a vertical free liquid boundary at the cone rim (without a sea of liquid). Temperature control of the rotating cone and of the fixed plate leads to acceptable temperature uniformity in the test liquid for working temperatures within 10°C or 20°C of ambient; the corresponding interval is about 1°C if the cone temperature control is abandoned. Pressure gradients measured using a Newtonian liquid agree with those calculated using Walters' eq. (3). For a viscoelastic liquid, after subtracting inertial contributions, pressure distributions measured at a given shear rate in the cone/plate region do not change when the gap angle is changed from 2° to 3°, showing that the effects of secondary flow are negligible. Values ofN 3 =N 1 + 2N 2 obtained from the gradients of these distributions are believed to be in error by not more than ±1 Pa, in favorable cases. The present most useful ranges are: 10 to 5000 Pa forN 3; 0.1 to 200 sec–1 for shear rate; up to 5 Pa s for viscosity; and 5 to 40°C for temperature. As an application, it is shown that adding 0.1% of a high molecular weight polyisobutylene to a 2% polyisobutylene solution doublesN 3 and has no detectable effect on the viscosity measured at low shear rates with a Ferranti-Shirley viscometer.
Zusammenfassung Im Vergleich zu dem ähnlichen Kegel-Platte-Gerät von Adams und Lodge (4) zur Messung der Druckverteilung wurden an dem neuen Gerät die folgenden Verbesserungen vorgenommen: Temperaturregelung an Kegel und Platte, Versteifung des Rahmens, vier (anstatt drei) Druckmeßlöcher im Kegel-Platte-Bereich, ein zusätzliches Druckmeßloch auf der Achse unter der Kegelstumpf-Deckfläche, ausschließliche Verwendung einer vertikalen freien Grenzfläche der Flüssigkeit am Kegelrand (ohne umgebenden Flüssigkeitssee). Die Temperaturregelung des rotierenden Kegels und der festen Platte führt zu einer ausreichenden Temperaturgleichförmigkeit in der Testflüssigkeit für Betriebstemperaturen, die höchstens um 10–20°C von der Umgebungstemperatur abweichen. Dieses Intervall beträgt dagegen nur etwa 1°C, wenn auf die Temperaturregelung am Kegel verzichtet wird. Für newtonsche Flüssigkeiten entsprechen die gemessenen Druckgradienten den mittels der Gleichung von Walters (3) berechneten. Für viskoelastische Flüssigkeiten zeigen sich bei der Änderung des Spaltwinkels von 2° auf 3° nach Abzug der Trägheitsbeiträge keine Änderungen der bei einer bestimmten Schergeschwindigkeit gemessenen Druckverteilung. Dies zeigt, daß Sekundärströmungseffekte vernachlässigbar sind. Es darf angenommen werden, daß die Werte vonN 3 =N 1 + 2N 2, die man aus den Gradienten dieser Verteilungen erhält, unter günstigen Umständen mit einem Fehler von nicht mehr als ±1 Pa behaftet sind. Gegenwärtig liegen die günstigsten Bereiche bei 10 bis 5000 Pa fürN 3, 0,1 bis 200 s–1 für die Schergeschwindigkeit, unterhalb von 5 Pa s für die Viskosität und 5 bis 40°C für die Temperatur. Als Anwendung wird gezeigt, daß ein Zusatz von 0,1% hochmolekularen Polyisobutylens zu einer 2%igen Polyisobutylenlösung den Wert vonN 3 verdoppelt, aber keinen erkennbaren Einfluß auf die (bei geringen Schergeschwindigkeiten mit einem Ferranti-Shirley-Viskosimeter gemessen) Viskosität hat.

udsf unidirectional shear flow - TCP truncated-cone and plate - N 1,N 2 1st and 2nd normal stress differences in udsf - N 3 N 1 + 2N 2 - : = A is defined by the equationA := B - P * hole pressurePw – Pm; Pw, Pm = pressures measured by flush transducer and by hole-mounted transducer - t time - , strain rate, shear rate - (P,t) covariant body metric tensor at particleP and timet - i , i covariant and contravariant udsf body base vectors (i = 1, 2, 3) - –1 inverse of - R, plate radius, cone/plate gap angle - r 0,h 0 radius and height of cone truncation - r,, spherical polar coordinates; cone axis = 0; plate surface = /2 - physical components of stress; for a tensile component - cone angular velocity - p on the plate = /2 - ,T, density, absolute temperature, viscosity - P 0.15 2(r 2R 2) (inertial contribution) [2.7] - P ve contribution [2.8] from flow perturbations of viscoelastic origin - r i i = 1,2,3,4; values ofr at centers of holes in cone/plate region - P i () pressure change recorded by transducerTi when cone angular velocity goes from zero to - 1/2 {P i ()+ P i (–)} (average for 2 senses of rotation) - rim pressure, from least-squares line through four points - Re Reynolds' number:R 2/ - (P,t)/t With 11 figures and 2 tables  相似文献   

5.
The growth and relaxation of shear and normal stresses have been investigated for glass and carbon fiber-filled polyethylene melts over a wide range of shear rates and temperatures by means of a cone-and-plate rheogoniometer. Flow parameters and flow curves characterizing the stress overshoot and relaxation phenomena of the fiber-filled systems were determined experimentally. The influence of fiber loading, fiber size and temperature on the transient flow parameters are discussed.Predictions by the Meister and Bogue constitutive equations were compared with the experimental data for the transient shear and normal stresses. These equations predict satisfactorily the non-linear transient shear flow of polymer melts and its fiber-filled systems.  相似文献   

6.
The dynamics of a single droplet under shear flow between two parallel plates is investigated by using the immersed boundary method. The immersed boundary method is appropriate for simulating the drop-ambient fluid interface. We apply a volume-conserving method using the normal vector of the surface to prevent mass loss of the droplet. In addition, we present a surface remeshing algorithm to cope with the distortion of droplet interface points caused by the shear flow. This mesh quality improvement in conjunction with the volume-conserving algorithm is particularly essential and critical for long time evolutions. We study the effect of wall confinement on the droplet dynamics. Numerical simulations show good agreement with previous experimental results and theoretical models.  相似文献   

7.
The receptivity of the separated shear layer for Re = 300 flow past a cylinder is investigated by forced excitation via an unsteady inflow. In order to isolate the shear layer instability, a numerical experiment is set up that suppresses the primary wake instability. Computations are carried out for one half of the cylinder, in two dimensions. The flow past half a cylinder with steady inflow is found to be stable for Re = 300. However, an inlet flow with pulsatile perturbations, of amplitude 1% of the mean, results in the excitation of the shear layer mode. The frequency of the perturbation of the inlet flow determines the frequency associated with the shear layer vortices. For a certain range of forced frequencies the recirculation region undergoes a low‐frequency longitudinal contraction and expansion. An attempt is made to relate this instability to a global mode of the wake determined from a linear stability analysis. Interestingly, this phenomenon disappears when the outflow boundary of the computational domain is shifted sufficiently downstream. This study demonstrates the need of carefully investigating the effect of the location of outflow boundaries if the computational results indicate the presence of low‐frequency fluctuations. The effect of Re and amplitude of unsteadiness at the inlet are also presented. All computations have been carried out using a stabilized finite element formulation of the incompressible flow equations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The spatio-temporal characteristics of the wall-pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated through pressure-velocity joint measurements carried out using multiple-arrayed microphones and split-film probes. A spoke-wheel-type wake generator was installed upstream of the backward-facing step. The flow structure at the effective forcing frequency (St f=0.2) was found to be well organized in terms of wall pressure spectrum, cross-correlation, wavenumber-frequency spectrum, and wavelet auto-correlation. Introduction of the unsteady wake (St f=0.2) reduced the reattachment length by 10%. In addition, the unsteady wake enhanced the turbulence intensity near the separation edge and, as a consequence, enhanced the quadrupole sound sources; however, the turbulence intensity near the reattachment region was weakened and the overall flow noise was attenuated. The greater organization of the flow structure induced by the unsteady wake led to a weakening of the dipole sound sources, which are the dominant sound sources in this system. The dipole sound sources generated by wall pressure fluctuations were calculated using Curles integral formula.Abbreviations AR Aspect ratio - SBF Spatial box filtering Roman symbols C p Wall pressure fluctuation coefficient, p/0.5U 2 - H Step height of backward-facing step (mm) - H s Shape factor (H s = */) - R s Distance from acoustic source point to observation point (m) - Re H Reynolds number, U H/ - St The reduced frequency, fH/U - St f Normalized forcing frequency by unsteady wake, f p H/U - T Vortex shedding period (s) - U Free-stream velocity (m/s) - a Speed of sound (m/s) - f Frequency (Hz) - f p Wake passing frequency (Hz) - k Turbulent kinetic energy (m2/s2) - k x Streamwise wave number (1/m) - k z Spanwise wave number (1/m) - l j Cosine of angle - p Instantaneous wall pressure (Pa) - p rms Root-mean-square of wall pressure (Pa) - p SBF Spatial box filtered wall pressure (Pa) - p d Dipole sound source (Pa) - p w Conditionally-averaged wall pressure (Pa) - q Dynamic pressure, 0.5U 2 (Pa) - r Distance from origin to observation point (mm) - u c Convection velocity (m/s) - umax Root-mean-square of streamwise velocity (m/s) - x R Time-mean reattachment length (mm) Greek symbols p Forward-flow time fraction - Auto-correlation of pressure at x 0 - Two-dimensional cross-correlation of pressure with streamwise separation interval , spanwise separation interval , and time delay , at (x 0, z 0) - Boundary layer thickness (mm, 99%) - * Displacement thickness (mm, ) - ij Kroneckers delta function - Phase angle (°) - Wavelength (mm) - Momentum thickness (mm, ) - Angle between vertical axis and observation point (°) - Density (kg/m3) - Time delay (s) - Streamwise separation interval (m) - Spanwise separation interval (m) - p (f; x 0) Autospectrum of pressure measured at x 0 (Pa2 s) - pp (, ; x 0) Streamwise cross spectrum of pressure at x 0 (Pa2 s) - pp (, , ; x 0, z 0) Streamwise and spanwise cross spectrum of pressure at (x 0, z 0) (Pa2 s) - pp (kx, ; x 0) Streamwise wavenumber-frequency spectrum of pressure at x 0 (Pa2 s) - pp (kx, kz, ; x 0, z 0) Two-dimensional wavenumber-frequency spectrum of pressure at (x 0, z 0) (Pa2 s)  相似文献   

9.
Results of an experimental study of a turbulent flow past a flat rib with different angles of alignment toward the flow and with different rib heights are presented. The angle of rib alignment toward the flow is varied within ϕ = 50–90°. Vortex formation is visualized, and the coordinates of the reattachment line are determined. It is demonstrated that a decrease in the angle ϕ forms a reattachment region and makes the flow behind the rib more three-dimensional. Pressure coefficients are measured in different longitudinal sections of the channel behind the rib with a varied angle of rib alignment ϕ. Temperature fields on the surface behind the rib are measured by means of an infrared imager and by thermocouples, and the corresponding heat-transfer coefficients are calculated. The effect of the angle of rib alignment toward the flow and the rib height on dynamic and thermal characteristics of the separated flow is analyzed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 103–109, January–February, 2007.  相似文献   

10.
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.  相似文献   

11.
Near-wall data for the strongly perturbed flow in a neutrally stable boundary layer encountering a steep, smooth, two-dimensional hill are presented. Observations were made on the centerplane of a water channel at thirteen stations relative to the hill by laser Doppler anemometry. The large reverse flow region that is formed on the lee of the hill was particularly scrutinized through seven measuring stations. Results are presented for the mean and turbulent properties of the flow. Wall shear stress was evaluated through fitting procedures that resorted to the near wall behavior of the velocity profile. Logarithmic fits as well as predictions through the Reynolds stress profiles are also presented.  相似文献   

12.
A general formulation of a nonlinear initial-boundary problem of an unsteady separated flow around an airfoil by an ideal incompressible fluid is considered. The problem is formulated for a complex velocity. Conditions of shedding of vortex wakes from the airfoil are analyzed in detail. The proposed system of functional relations allows constructing algorithms for solving a wide class of problems of the wing theory. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 48–56, March–April, 2007.  相似文献   

13.
Blood flow dynamics play an important role in the pathogenesis and treatment of intracranial aneurysms. The evaluation of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils, in addition the temporal and spatial variations of wall shear stress in the aneurysm are correlated with its growth and rupture. The present numerical investigation describes the hemodynamics in two models of terminal aneurysm of the basilar artery. Aneurysm models with an aspect ratio of 1.0 and 1.67 were studied. Each model was subject to a steady, sinusoidal and physiologically representative waveform of inflow for a mean Reynolds number of 560. Symmetric and asymmetric outflow conditions in the branches were also studied.

The three-dimensional continuity and the Navier-Stokes equations for incompressible, unsteady laminar flow with Newtonian properties were solved with a commercial software using non structured grids with 61334 and 65961 cells for models 1 and 2, respectively. The grids were primarily composed of tetrahedral elements.

The intra-aneurysmal flow was unsteady for all input conditions and in both models, the flow always showed a complex vortex structure. The inflow and outflow zones in the aneurysm neck were determined. The wall shear stress on the aneurysm showed large temporal and spatial variations. The asymmetric outflow increased the wall shear stress in both models.  相似文献   

14.
水平旋转空腔环流的壁面应力   总被引:7,自引:0,他引:7  
通过对典型的水平旋转内消能泄洪洞空腔环流的试验观测,研究了其壁面应力的变化规律。空腔环流的壁面压强在水平洞的起始段壁面压强急剧减小然后回升,具有过渡段的性质,沿程波状减小,符合对数变化规律,但不同的流态,对数律的参数的变化是不同的:内界面相对压强Po/Pwz。在淹沿流流态时,随(H-h)/h的变化率显著不同,在吸允流流态时却基本相同;壁面切应力沿z的变化规律为先急剧减小,随后缓慢减小至零,主要与环流特性有密切的关系。  相似文献   

15.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Unsteady flow dynamics in doubly constricted 3D vessels have been investigated under pulsatile flow conditions for a full cycle of period T. The coupled non‐linear partial differential equations governing the mass and momentum of a viscous incompressible fluid has been numerically analyzed by a time accurate Finite Volume Scheme in an implicit Euler time marching setting. Roe's flux difference splitting of non‐linear terms and the pseudo‐compressibility technique employed in the current numerical scheme makes it robust both in space and time. Computational experiments are carried out to assess the influence of Reynolds' number and the spacing between two mild constrictions on the pressure drop across the constrictions. The study reveals that the pressure drop across a series of mild constrictions can get physiologically critical and is also found to be sensitive both to the spacing between the constrictions and the oscillatory nature of the inflow profile. The flow separation zone on the downstream constriction is seen to detach from the diverging wall of the constriction leading to vortex shedding with 3D features earlier than that on the wall in the spacing between the two constrictions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The current work describes the blood flow dynamics and fluid–structure interaction in seven patient‐specific models of bifurcating cerebral aneurysms located in the anterior and posterior circulation regions of the circle of Willis. The models were obtained from 3D rotational angiography image data, and blood flow dynamics and fluid–structure interaction were studied under physiologically representative waveform of inflow. The arterial wall was assumed to be elastic, isotropic and homogeneous. The flow was assumed to be laminar, non‐Newtonian and incompressible. In one case, the effects of different model suppositions and boundary conditions were reported in detail. The fully coupled fluid and structure models were solved with the finite elements package ADINA. The vortex structure, pressure, wall shear stress (WSS), effective stress and displacement of the aneurysm wall showed large variations, depending on the morphology of the artery, aneurysm size and position. The time‐averaged WSS, effective stress and displacement at the aneurysm fundus vary between 0.17 and 4.86 Pa, 4.35 and 170.2 kPa and 0.16 and 0.74 mm, respectively, for the seven patient‐specific models of bifurcating cerebral aneurysms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The unsteady incompressible Navier–Stokes equations are formulated in terms of vorticity and stream-function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the vorticity transport equation using the alternating direction implicit method, whereas the streamfunction equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem, prior to the onset of three-dimensionality in the experiment.  相似文献   

19.
A numerical investigation of the behaviour of a cavitation pocket developing along a Venturi geometry has been performed using a compressible one-fluid hybrid RANS/LES solver. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a determinant point to accurately simulate the dynamic of sheet cavities. Various turbulent approaches are tested: a new Scale-Adaptive model and the Detached Eddy Simulation. 2D and 3D simulations are compared with the experimental data. An oblique mode of the sheet is put in evidence.  相似文献   

20.
A numerical investigation of laminar flow over a three-dimensional backward-facing step is presented with comparisons with detailed experimental data, available in the literature, serving to validate the numerical results. The continuity constraint method, implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier–Stokes equations for incompressible laminar isothermal flow. Two-dimensional numerical simulations of this step geometry underestimate the experimentally determined extent of the primary separation region for Reynolds numbers Re greater than 400. It has been postulated that this disagreement between physical and computational experiments is due to the onset of three-dimensional flow near Re ≈ 400. This paper presents a full three-dimensional simulation of the step geometry for 100⩽ Re⩽ 800 and correctly predicts the primary reattachment lengths, thus confirming the influence of three-dimensionality. Previous numerical studies have discussed possible instability modes which could induce a sudden onset of three-dimensional flow at certain critical Reynolds numbers. The current study explores the influence of the sidewall on the development of three-dimensional flow for Re greater than 400. Of particular interest is the characterization of three-dimensional vortices in the primary separation region immediately downstream of the step. The complex interaction of a wall jet, located at the step plane near the sidewall, with the mainstream flow reveals a mechanism for the increasing penetration (with increasing Reynolds number) of three-dimensional flow structures into a region of essentially two-dimensional flow near the midplane of the channel. The character and extent of the sidewall-induced flow are investigated for 100⩽Re⩽ 800. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号