首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A laueite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been studied by vibrational spectroscopy and scanning electron microscopy with EDX. Chemical formula calculated on the basis of semi-quantitative chemical analysis can be expressed as (Mn2+0.85,Fe2+0.10Mg0.05)∑1.00(Fe3+1.90,Al0.10)∑2.00(PO4)2(OH)2·8H2O.The laueite structure is based on an infinite chains of vertex-linked oxygen octahedra, with Fe3+ occupying the octahedral centers, the chain oriented parallel to the c-axis and linked by PO4 groups. Consequentially not all phosphate units are identical. Two intense Raman bands observed at 980 and 1045 cm−1 are assigned to the ν1 PO43− symmetric stretching mode. Intense Raman bands are observed at 525 and 551 cm−1 with a shoulder at 542 cm−1 are assigned to the ν4 out of plane bending modes of the PO43−. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Intense Raman bands are observed at 3379 and 3478 cm−1 and are attributed to the OH stretching vibrations of the hydroxyl units. Intense broad infrared bands are observed. Vibrational spectroscopy enables subtle details of the molecular structure of laueite to be determined.  相似文献   

2.
Apjohnite, a naturally occurring Mn-bearing pseudo-alum from Terlano, Bolzano, Italy, has been characterized by EPR, optical, IR and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands around 400 nm due to Mn(II) ion in apjohnite. From EPR studies, the parameters derived, g=2.0 and A=8.82 mT, confirm MnO(H(2)O)(5) distorted octahedra. The presence of iron impurity in the mineral is reflected by a broad band centered around 8400 cm(-1) in the NIR spectrum. A complex band profile appears strongly both in IR and Raman spectra with four component bands around 1100 cm(-1) due to the reduction of symmetry for sulphate ion in the mineral. A strong pair of IR bands at 1681 and 1619 cm(-1) with variable intensity is a proof for the presence of water in two states in the structure of apjohnite.  相似文献   

3.
The Fourier-transform Raman (FT-Raman), infrared (FT-IR), and UV-visible absorption spectra of four dipyrrinones and two mesobilirubins have been investigated in the solid state and in CH2Cl2 solutions. A detailed spectral analysis, assignment and discussion of these spectra are presented. The bands at 1735-1738, 1691-1707 and 1359-1377 cm(-1) which were assigned to the stretching vibrations of the C-O-C and C-O-H and symmetric deformation of C-H bonds, respectively, can act as a marker to distinguish the compounds of this class. The striking differences between the spectra of the compounds suggest that mesobilirubin XIIIalpha is tending to adopt as ridge-tile conformation, rather than linear conformation.  相似文献   

4.
Polyaniline (PANI) films were prepared in situ on silicon windows during the oxidation of aniline with ammonium peroxydisulfate in aqueous solutions of strong (0.1 M sulfuric) or weak (0.4 M acetic) acid or without any acid. In solutions of sulfuric acid, a granular PANI is produced, in solutions of weak acids or without any acid, PANI nanotubes are obtained. The thermal stability and structural variation of the corresponding films produced on silicon windows during treatment at 80 °C for three months were studied by FTIR and Raman spectroscopies. The morphology of the films is preserved during the degradation but the molecular structure changes. The results indicate that the spectral changes correspond to deprotonation, oxidation and chemical crosslinking reactions. The films of PANI salts loose their protonating acid. PANI bases are more stable than the salt forms during thermal ageing. The films obtained in water or in the presence of acetic acid are more stable than those prepared in solutions of sulfuric acid. The protonated structure is more prone to crosslinking reactions than deprotonated one. The molecular structure corresponding to the nanotubular morphology, which contains the crosslinked phenazine- and oxazine-like groups, is more stable than the molecular structure of the granular morphology.  相似文献   

5.
The thermal decomposition of ettringite, Ca6[Al(OH)6]2(SO4)3·∼26H2O, was studied with pulsed neutron time-of-flight diffraction combined with Rietveld structure refinement. Like prior investigations, transition from a crystalline to amorphous state occurred following the loss of ∼20 water molecules. In contrast to earlier investigations, which relied upon indirect measurements of water and hydroxyl occupancies, the present study inferred the occupancies directly from Rietveld crystal structure refinement of the diffraction data. The decomposition pathway was shown to be more complex than previously envisioned, involving the simultaneous loss of hydroxyl and water molecules. Nuclear magnetic resonance (NMR) spectroscopy studies of the rigid lattice lineshapes of fully and partially hydrated ettringite were performed and confirmed our decomposition model.  相似文献   

6.
Lilli Paama  Ilkka Pitk  nen  Hannu R  nkk  m  ki  Paavo Per  m  ki 《Thermochimica Acta》1998,320(1-2):127-133
The characterization of historical mortars was performed by thermal analysis (TG-DTG), simultaneous infrared spectroscopy (TG-FTIR) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were taken from St. John Church (Tartu, Estonia), built in the 13th–14th centuries. The analyses are important for the restoration of the church.

In reality, mortar is a very difficult system, the lime is accompanied with different hydraulic components. TG-DTG analysis and FTIR methods can be used to identify various components of mortar and to observe the reactions associated with the controlled heating at 25–900°C in dynamic air and nitrogen atmosphere. The elemental composition of the acid-soluble components (ASC) was determined by using the ICP-AES techniques.  相似文献   


7.
Polyanilines doped with (HCl+KCl) and (HCl+CoCl2) were prepared by co-doping method, respectively. For comparison, polyaniline emeraldine salt (ES) by doping with HCl and its emeraldine base (EB) form were also synthesized. The co-doped polyanilines, ES and EB samples were all characterized by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy aiming to understand the transformations in the different doping status. The results show that the doping degree of K+ ions is considerably higher than that of Co2+ ions under the same co-doping conditions possibly due to different pseudoprotonation constants of EB with K+ ions and Co2+ ions. Moreover, morphology difference of polyaniline co-doped with alkaline metal ions or transition meal ions may arise from different coordination geometry of metal ions. Nevertheless, there are similar chemical transformations of quinoid units to benzenoid ones on polyaniline backbones for the ES and both co-doped samples. And the polyaniline backbones co-doped with H+ and metal cations are found to attain weaker charge delocalization than the ES which is doped solely with H+.  相似文献   

8.
Compounds having general formula: [M(FO)(Cl)(x)(H(2)O)(y)].zH(2)O, where (M=Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), FO=folate anion, x=2 or 4, y=2 or 4 and z=0, 1, 2, 3, 5 or 15) were prepared. The obtained compounds were characterized by elemental analysis, infrared as well as electronic spectra, thermogravimetric analysis and the conductivity measurements. The results suggested that all folate complexes were formed by 2:1 molar ratio (metal:folic acid) as a bidentate through both of the two carboxylic groups. The molar conductance measurements proved that the folate complexes are electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* were estimated from the DTG curves. The antibacterial evaluation of the folic acid and their complexes was also done against some Gram positive/negative bacteria as well as fungi.  相似文献   

9.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

10.
Recently, there has been increase of general interest in fungi because of the possible medical applications of their polysaccharide constituents called glucans, some of which are reported to have immunomodulatory properties. Since an extraction method can change the chemical composition of a substance, especially a delicate one such as fungal thallus, it is necessary and useful to know more about the studied matter in advance in order to choose the chemical procedure properly. We demonstrated the usefulness of vibrational spectroscopy in identifying different glucan types in various parts of intact fruiting bodies of Asco- and Basidiomycetes. Fourier transform-infrared (FT-IR) spectroscopy was used for obtaining vibrational spectra of spores and fruiting bodies of more than 70 species belonging to 37 different genera of wild growing mushrooms. The list of the bands in 750-950 cm(-1) interval, assigned to alpha- and beta-glucans, is provided for all species studied. Vibrational spectra in the interval 1000-1200 cm(-1) could serve as an indicator of mushroom genus, although particular species cannot be identified spectroscopically. Great similarities in spectra of spores of the same genus, but different species, e.g. Tricholoma album and Trichloma sulphureum, were observed. On the other hand, spectra of cap, stalk and spores of the same mushroom show great differences, indicating variety in the chemical composition of different parts of the same fruiting body.  相似文献   

11.
12.
A simple preparation method of gold nanoparticles (AuNPs) with 4-acylamidobenzenethiol derivative (BD) was improved to obtain the larger size of AuNPs which exhibited localized surface plasmon resonance. The spectroscopic characterizations of two kinds of BD-stabilized AuNPs were carried out by means of ATR-FTIR and Raman spectroscopy in order to clarify the conformation and orientation of BDs adsorbed on AuNPs. The relation between the stability of AuNPs and the adsorbed states of BDs were also discussed. The average sizes of the resulting AuNPs were 18 nm for BD1 and 30 nm for BD2, respectively. It was found that the BD1-capped AuNPs formed large aggregates. The results of vibrational spectroscopy revealed that loosely packed self-assembled monolayer (SAM) of BD1 molecules was formed on the surface of the AuNPs; on the other hand, densely packed SAM was formed in the case of BD2. We concluded the difference behavior between the two types of molecules was caused by the functional groups. The sulfuryl groups of BD2 induced highly ordered SAM and suppressed aggregate formation of AuNPs.  相似文献   

13.
Raman spectroscopy complimented with supplementary infrared spectroscopy has been used to characterise a synthetic nickel substituted aurichalcite a zinc/nickel hydroxy carbonate, (Zn2+, Cu2+, Ni2+)5(CO3)2(OH)6. XRD patterns show high orientation and indicate the presence of some minor impurities. The diffraction patterns for the Ni-aurichalcite are well correlated with the standard reference patterns. EDAX analyses indicate variations in chemical composition of Zn/Ni ratios of ∼20:1. The symmetry of the carbonate anion in aurichalcite is Cs and is composition dependent. This symmetry reduction results in multiple bands in both the symmetric stretching and bending regions. The intense band for the Ni-aurichalcite at 1070 cm−1 is assigned to the ν1(CO3)2− symmetric stretching mode. Three Raman bands assigned to the ν3(CO3)2− antisymmetric stretching modes are observed for Ni-aurichalcite at 1372, 1480 and 1543 cm−1. Multiple Raman bands are observed in the regions from 800 to 850 cm−1 and 720 to 750 cm−1, and are attributed to ν2 and ν4 bending modes confirming the reduction of the carbonate anion symmetry in the aurichalcite structure. This research proves that nickel containing aurichalcites can be synthesised in the laboratory thus mimicing the natural nickel containing aurichalcites.  相似文献   

14.
Infrared spectroscopy has proven most useful for the study of anions in the interlayer of natural hydrotalcites. A suite of naturally occurring hydrotalcites including carrboydite, hydrohonessite, reevesite, motukoreaite and takovite were analysed. Variation in the hydroxyl stretching region was observed and the band profile is a continuum of states resulting from the OH stretching of the hydroxyl and water units. Infrared spectroscopy identifies some isomorphic substitution of sulphate for carbonate through an anion exchange mechanism for the minerals carrboydite and hydrohonessite. The infrared spectra of the CO3 and SO4 stretching region of takovite is complex because of band overlap. For this mineral some sulphate has replaced the carbonate in the structure. In the spectra of takovites, a band is observed at 1346 cm(-1) and is attributed to the carbonate anion hydrogen bonded to water in the interlayer. Infrared spectroscopy has proven most useful for the study of the interlayer structure of these natural hydrotalcites.  相似文献   

15.
A title organic-inorganic hybrid material 2-amino-3-benzyloxy pyridinium perchlorate was synthesized by slow evaporation at room temperature using 2-amino-3-benzyloxypyridine as the structure-directing agent. The structure of the title compound was determined by means of single-crystal X-ray diffraction at 293 K. The results show that this compound crystallizes in the centrosymetric monoclinic system with a space group of P21/n and lattice parameters of a=0.7025(5) nm, b=1.2635(5) nm, c=1.5766(5) nm, Z=4 and V=1.3905(2) nm3. The crystal structure has been determined and refined to R1=0.0367 and wR2=0.1022 using 2326 independent reflections and can be described as a succession of organic and inorganic layers parallel to the bc plane. In this arrangement, hydrogen bonds and van der Waals interactions between different species play an important role in the two-dimensional(2D) network cohesion. This compound was also characterized by means of infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis-differential thermal analysis(TG-DTA). Moreover, protonic conduction of this compound determined by an impedance analyzer has been studied in the temperature range of 303-373 K.  相似文献   

16.
Two novel bismuth succinate hydrates, namely, poly[[diaqua(μ3-butane-1,4-dicarboxylato)hemi(μ-butane-1,4-dicarboxylato)bismuth] monohydrate], {[Bi(C4H4O4)1.5(H2O)2]·H2O}n ( 1 ), and poly[[μ-aqua-aqua(μ3-butane-1,4-dicarboxylato)(μ-butane-1,4-dicarboxylato)-μ-oxido-dibismuth] monohydrate], {[Bi2(C4H4O4)2O(H2O)2]·H2O}n ( 2 ), have been synthesized. Their crystal structures were determined by single-crystal X-ray diffraction and the compounds were characterized by IR and Raman spectroscopy, powder X-ray diffraction and thermal analysis. The crystal structure analysis revealed that the compounds are coordination polymers, with 1 having a two-dimensional layered structure and 2 displaying a three-dimensional (3D) framework. Fully deprotonated succinate anions (C4H4O42−) in two different conformations (trans and gauche) are included in their composition. The Bi3+ cations are surrounded by O atoms from the carboxylate groups of succinate anions and aqua ligands. BiO9 coordination polyhedra in 1 are connected in pairs by edges. These pairs are bound together by bridging succinate ligands to form layers. Bismuth coordination polyhedra of two different types (BiO9 and BiO7) in 2 are connected by edges to form infinite ribbons. Ribbons of polyhedra with bridging succinate ligands form a 3D polymeric structure.  相似文献   

17.
Within the Bi2O3-XO2-TeO2 (X=Ti, Zr) systems, a large glass-forming domain was found for X=Ti, but no glass formation was evidenced for X=Zr. Densities, glass transition (Tg), crystallization (Tc) temperatures and Raman spectra of the relevant glasses were studied as functions of the composition. The Raman spectra of the glasses were interpreted in terms of the structural transformations produced by the modifiers. It was established that the addition of Bi2O3 and TiO2 content to TeO2 glass influences the Tg temperature in a similar manner: this value progressively increases with the increase of the modifier concentration. However, the structural evolutions are different: (a) the addition of TiO2 to TeO2 glass keeps the polymerized framework structure in transforming a number of Te-O-Te bridges into the Te-O-Ti ones without producing any tellurite anions (i.e., the [TeO3]2− groups); (b) on the contrary, the addition of Bi2O3 destroys the glass framework by giving rise to the island-type [TenOm]2(m−2n)− complex tellurites anions, thus causing a depolymerization of the glass.  相似文献   

18.
Poly(ortho-phenylenediamine) and oligomers of ortho-phenylenediamine were chemically synthesized and characterized by UV-vis, 1H and 13C NMR, FTIR and resonance Raman spectroscopies. Polymerization of ortho-phenylenediamine in HCl medium with ammonium persulfate only leads the trimer compound, in disagreement with some previous reports. Nevertheless, in acetic acid medium it was possible to prepare a polymer constituted by ladder phenazinic segments with different protonation levels and quinonediimine rings (polyaniline-like). X-ray absorption at N K-edge (N K XANES), X-ray photoelectron (XPS) and Electron paramagnetic resonance (EPR) spectroscopies were used to determine the different kinds of nitrogen presents in this class of polymer. N K XANES spectrum of poly(ortho-phenylenediamine) shows the band of N nitrogen of non-protonated phenazinic rings at 398.2 eV. In addition, XPS and N K XANES data confirm the presence of different types of protonated nitrogens in the polymeric poly(ortho-phenylenediamine) chain and the EPR spectrum shows that the polymer has a very weak polaronic signal.  相似文献   

19.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

20.
Hydrozincite and smithsonite were synthesised by controlling the partial pressure of CO2. Previous crystallographic studies concluded that the structure of hydrozincite was a simple one. However both Raman and infrared spectroscopy show that this conclusion is questionable. Multiple bands are observed in both the Raman and infrared spectra in the (CO3)2− antisymmetric stretching and bending regions of hydrozincite showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the hydrozincite structure. Multiple OH stretching vibrations centred in both the Raman and infrared spectra show that the OH units in the hydrozincite structure are non-equivalent. The Raman spectrum of synthetic smithsonite is a simple spectrum characteristic of carbonate with Raman bands observed at 1408, 1092 and 730 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号