首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The effect of varying airfoil thickness and camber on plunging and combined pitching and plunging airfoil propulsion at Reynolds number Re=200, 2000, 20 000 and 2×106 was studied by numerical simulations for fully laminar and fully turbulent flow regimes. The thickness study was performed on 2-D NACA symmetric airfoils with 6-50% thick sections undergoing pure plunging motion at reduced frequency k=2 and amplitudes h=0.25 and 0.5, and for combined pitching and plunging motion at k=2, h=0.5, phase ?=90°, pitch angle θo=15° and 30° and the pitch axis was located at 1/3 of chord from leading edge. At Re=200 for motions where positive thrust is generated, thin airfoils outperform thick airfoils. At higher Re significant gains could be achieved both in thrust generation and propulsive efficiency by using a thicker airfoil section for plunging and combined motion with low pitch amplitude. The camber study was performed on 2-D NACA airfoils with varying camber locations undergoing pure plunging motion at k=2, h=0.5 and Re=20 000. Little variation in thrust performance was found with camber. The underlying physics behind the alteration in propulsive performance between low and high Reynolds numbers has been explored by comparing viscous Navier-Stokes and inviscid panel method results. The role of leading edge vortices was found to be key to the observed performance variation.  相似文献   

2.
The effects of asymmetric sinusoidal motion on pitching airfoil aerodynamics were studied by numerical simulations for 2-D flow around a NACA0012 airfoil at Re=1.35×105. Various unsteady parameters (amplitude of oscillation, d; reduced frequency, k) were applied to investigate the effect of asymmetry parameter S on the instantaneous force coefficients and flow patterns. The results reveal that S has a noticeable effect on the aerodynamic performance, as it affects the instantaneous force coefficient, maximum lift and drag coefficient, hysteresis loops and the flow structures.  相似文献   

3.
Experimental observations of self-sustained pitch oscillations of a NACA 0012 airfoil at transitional Reynolds numbers were recently reported. The aeroelastic limit cycle oscillations, herein labelled as laminar separation flutter, occur in the range 5.0×104≤Rec≤1.3×105. They are well behaved, have a small amplitude and oscillate about θ=0°. It has been speculated that laminar separation leading to the formation of a laminar separation bubble, occurring at these Reynolds numbers, plays an essential role in these oscillations. This paper focuses on the Rec=7.7×104 case, with the elastic axis located at 18.6% chord. Considering that the experimental rig acts as a dynamic balance, the aerodynamic moment is derived and is empirically modelled as a generalized Duffing–van-der-Pol nonlinearity. As expected, it behaves nonlinearly with pitch displacement and rate. It also indicates a dynamically unstable equilibrium point, i.e. negative aerodynamic damping. In addition, large eddy simulations of the flow around the airfoil undergoing prescribed simple harmonic motion, using the same amplitude and frequency as the aeroelastic oscillations, are performed. The comparison between the experiment and simulations is conclusive. Both approaches show that the work done by the airflow on the airfoil is positive and both have the same magnitude. The large eddy simulation (LES) computations indicate that at θ=0°, the pitching motion induces a lag in the separation point on both surfaces of the airfoil resulting in negative pitching moment when pitching down, and positive moment when pitching up, thus feeding the LCO.  相似文献   

4.
High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.  相似文献   

5.
An experimental investigation was conducted to characterize the evolution of the unsteady vortex structures in the wake of a pitching airfoil with the pitch-pivot-point moving from 0.16C to 0.52C (C is the chord length of the airfoil). The experimental study was conducted in a low-speed wind tunnel with a symmetric NACA0012 airfoil model in pitching motion under different pitching kinematics (i.e., reduced frequency k=3.8–13.2). A high-resolution particle image velocimetry (PIV) system was used to conduct detailed flow field measurements to quantify the characteristics of the wake flow and the resultant propulsion performance of the pitching airfoil. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged velocity distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about the behavior of the unsteady vortex structures. Both the vorticity–moment theorem and the integral momentum theorem were used to evaluate the effects of the pitch-pivot-point location on the propulsion performance of the pitching airfoil. It was found that the pitch-pivot-point would affect the evolution of the unsteady wake vortices and resultant propulsion performance of the pitching airfoil greatly. Moving the pitch-pivot-point of the pitching airfoil can be considered as adding a plunging motion to the original pitching motion. With the pitch-pivot-point moving forward (or backward), the added plunging motion would make the airfoil trailing edge moving in the same (or opposite) direction as of the original pitching motion, which resulted in the generated wake vortices and resultant thrust enhanced (or weakened) by the added plunging motion.  相似文献   

6.
A direct force measurement technique employing piezoelectric load cells is used to experimentally investigate a two-dimensional airfoil (NACA 0012) undergoing dynamic stall. The load cells are installed at each end of the airfoil and give the force response in two directions in the plane normal to the airfoil axis during oscillations. Experiments are carried out at a Reynolds number based on the airfoil chord equal to 7.7×104, and at four reduced frequencies, k=0.005, 0.01, 0.02, and 0.04. Phase-averaged lift of the airfoil undergoing dynamic stall is presented. It is observed that hysteresis loops of the lift occur both when the airfoil is pitched to exceed its static stall limit and when it is still within its static stall limit, and they grow in size with increasing k at the same pitching mean angle of attack and pitching amplitude. Both the lift and the drag induced by the pitching motion are further analyzed using the methods of higher order correlation analysis and continuous wavelet transforms to undercover their nonlinear and nonstationary features, in addition to classical FFT-based spectral analysis. The results are quantitatively illustrated by an energy partition analysis. It is found that the unsteady lift and drag show opposite trends when the airfoil undergoes transition from the pre-stall regime to the full-stall regime. The degree of nonlinearity of the lift increases, and the lift show a nonstationary feature in the light-stall regime, while the nonlinearity of the drag decreases, and the drag shows nonstationary feature in both the light-stall and the full-stall regimes. Furthermore, the lift and the drag have significant nonlinear interactions as shown by the correlation analysis in the light-stall regime.  相似文献   

7.
Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°–13.6° (shallow-stall kinematics) and ?6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge–separated flows.  相似文献   

8.
A parametric study has been performed to analyse the flow around the thick-symmetric NACA 0021 airfoil in order to better understand the characteristics and effects of long separation bubbles (LoSBs) that exist on such airfoils at low Reynolds numbers and turbulence intensities. In the article, the prediction capabilities of two recently-developed transition models, the correlation-based γReθ model and the laminar-kinetic-energy-based κκLω model are assessed. Two-dimensional steady-state simulations indicated that the κκLω model predicted the separation and reattachment process accurately when compared with published experimental work. The model was then used to study the attributes and the effects of LoSBs as a function of the angle of attack, freestream turbulence intensity and Reynolds number. It was observed that LoSBs considerably degrade the aerodynamic performance of airfoils and lead to abrupt stall behaviour. It is, furthermore, illustrated that the presence of the LoSB leads to an induced camber effect on the airfoil that increases as the airfoil angle of attack increases due to the upstream migration of the bubble. An increase in the Reynolds number or turbulence levels leads to a reduction in the bubble extent, considerably improving the airfoil performance and leading to a progressive trailing-edge stall.  相似文献   

9.
The results of computational fluid dynamics (CFD) simulations in two and three spatial dimensions are compared to pressure measurements and particle image velocimetry (PIV) flow surveys to assess the suitability of numerical models for the simulation of deep dynamic stall experiments carried out on a pitching NACA 23012 airfoil. A sinusoidal pitching motion with a 10° amplitude and a reduced frequency of 0.1 is imposed around two different mean angles of attack of 10° and 15°. The comparison of the airloads curves and of the pressure distribution over the airfoil surface shows that a three-dimensional numerical model can better reproduce the flow structures and the airfoil performance for the deep dynamic stall regime. Also, the vortical structures observed by PIV in the flow field are better captured by the three-dimensional model. This feature highlighted the relevance of three-dimensional effects on the flow field in deep dynamic stall.  相似文献   

10.
In this research, the effect of flow regime change from subsonic to transonic on the air loads of a pitching NACA0012 airfoil is investigated. To do this, the effect of change in flow regime on the lift and pitching moment coefficients hysteresis cycles is studied. The harmonic balance approach is utilized for numerical calculation due to its low computational time. Verifications are also made with previous works and good agreements are observed. The assessment of flow regime change on the aforementioned hysteresis cycles is accomplished in the Mach number range of M=0.65–0.755. The reduced frequency and pitch amplitude also vary from k=0.03 to 0.1 and α0=1–2.51°, respectively. Results show that the effect of increase in Mach number is to increase and decrease the lift coefficient during downstroke and upstroke, respectively, whereas at low reduced frequencies, the effect of increase in Mach number may lead to a reverse manner when airfoil moves toward its extremum angle of attack. Results also reveal that as the pitch amplitude varies, the shape of lift coefficient hysteresis cycle depends more on the pitch amplitude than on the appearance of shock. It is shown that as the Mach number increases, the incidence angles correspond to the extremum pitching moment, and depending on the reduced frequency, lie between zero and extremum angle of attack. These incidence angles shift toward the extremum angle of attack as the reduced frequency decreases. Results also show that the increase in pitch amplitude at low Mach number, in such a way that leads to the formation of shock around the extremum angle of attack, causes the extremum pitching moment to appear around these angles and at high Mach number, depending on the reduced frequency, the extremum pitching moment incidence angles would be between zero and extremum incidence angle.  相似文献   

11.
The aim of present study is to investigate the effect of chord-wise flexure amplitude on unsteady aerodynamic characteristics for a flapping airfoil with various combinations of Reynolds number and reduced frequency. Unsteady, viscous flows over a single flexible airfoil in plunge motion are computed using conformal hybrid meshes. The dynamic mesh technique is applied to illustrate the deformation modes of the flexible flapping airfoil. In order to investigate the influence of the flexure amplitude on the aerodynamic performance of the flapping airfoil, the present study considers eight different flexure amplitudes (a0) ranging from 0 to 0.7 in intervals of 0.1 under conditions of Re=104, reduced frequency k=2, and dimensionless plunge amplitude h0=0.4. The computed unsteady flow fields clearly reveal the formation and evolution of a pair of leading edge vortices along the body of the flexible airfoil as it undergoes plunge motion. Thrust-indicative wake structures are generated when the flexure amplitude of the airfoil is less than 0.5 of the chord length. An enhancement in the propulsive efficiency is observed for a flapping airfoil with flexure amplitude of 0.3 of the chord length. This study also calculates the propulsive efficiency and thrust under various Reynolds numbers and reduced frequency conditions. The results indicate that the propulsive efficiency has a strong correlation with the reduced frequency. It is found that the flow conditions which yield the highest propulsive efficiency correspond to Strouhal number St of 0.255.  相似文献   

12.
The schooling behavior of rigid and flexible NACA0017 airfoils undergoing a heaving motion was experimentally explored using a merry-go-round configuration. Each airfoil was attached to the end of a horizontal support bar whose other end was connected to a freely rotating vertical axis. The axis was forced to undergo a sinusoidal motion in the vertical direction to generate a pure heaving motion of the airfoil in the frequency range of 0.4 to 4.8 Hz. The propulsion due to the heaving airfoil was expressed as the horizontal rotational speed of the support bar. This experimental setup simulates an infinite schooling of airfoils separated by a streamwise distance d undergoing in-phase heaving motions. The ratio of the distance to the chord length, d/c, was determined by the number of airfoils (2 ≤ n ≤ 8). The variation in rotational frequency F as a function of heaving frequency f was determined using different experimental parameters. The schooling number S = f /(nF), which represents the number of heaving oscillations between each pair of successive airfoils, was introduced to explain the schooling behavior of the airfoils. The effects of airfoil flexibility, d/c and f on the propulsive performance were examined in the context of the schooling behavior of the airfoils.  相似文献   

13.
The growing applications of low Reynolds number (LRN) operating vehicles impose the need for accurate LRN flow solutions. These applications usually involve complex unsteady phenomena, which depend on the kinematics of the vehicle such as pitching, plunging, and flapping of a wing. The objective of the present study is to address the issues related to LRN aerodynamics of a harmonically pitching NACA0012 airfoil. To this end, the influence of unsteady parameters, namely, amplitude of oscillation, d, reduced frequency, k, and Reynolds number, Re, on the aerodynamic performance of the model is investigated. Computational fluid dynamics (CFD) is utilized to solve Navier–Stokes (N–S) equations discretized based on the Finite Volume Method (FVM). The resulting instantaneous lift coefficients are compared with analytical data from Theodorsen’s method. The simulation results reveal that d, k, and Re are of great importance in the aerodynamic performance of the system, as they affect the maximum lift coefficients, hysteresis loops, strength, and number of the generated vortices within the harmonic motion, and the extent of the so-called figure-of-eight phenomenon region. Thus, achieving the optimum lift coefficients demands a careful selection of these parameters.  相似文献   

14.
Camber effects in the dynamic aeroelasticity of compliant airfoils   总被引:1,自引:0,他引:1  
This paper numerically investigates the effect of chordwise flexibility on the dynamic stability of compliant airfoils. A classical two-dimensional aeroelastic model is expanded with an additional degree of freedom to capture time-varying camber deformations, defined by a parabolic bending profile of the mean aerodynamic chord. Aerodynamic forces are obtained from unsteady thin airfoil theory and the corresponding compliant-airfoil inertia and stiffness from finite-element analysis. Vg and state-space stability methods have been implemented in order to compute flutter speeds. The study looks at physical realizations with an increasing number of degrees of freedom, starting with a camber-alone system. It is shown that single camber leads to flutter, which occurs at a constant reduced frequency and is due to the lock in between the shed wake and the camber motion. The different combinations of camber deformations with pitch and plunge motions are also studied, including parametric analyses of their aeroelastic stability characteristics. A number of situations are identified in which the flutter boundary of the compliant airfoil exhibits a significant dip with respect to the rigid airfoil models. These results can be used as a first estimation of the aeroelastic stability boundaries of membrane-wing micro air vehicles.  相似文献   

15.
The impact of Gurney flaps (GF), of different heights and perforations, on the aerodynamic and wake characteristics of a NACA 0015 airfoil equipped with a trailing-edge flap (TEF) was investigated experimentally at Re = 2.54 × 105. The addition of the Gurney flap to the TEF produced a further increase in the downward turning of the mean flow (increased aft camber), leading to a significant increase in the lift, drag, and pitching moment compared to that produced by independently deployed TEF or GF. The maximum lift increased with flap height, with the maximum lift-enhancement effectiveness exhibited at the smallest flap height. The near wake behind the joint TEF and GF became wider and had a larger velocity deficit and fluctuations compared to independent GF and TEF deployment. The Gurney flap perforation had only a minor impact on the wake and aerodynamics characteristics compared to TEF with a solid GF. The rapid rise in lift generation of the joint TEF and GF application, compared to conventional TEF deployment, could provide an improved off-design high-lift device during landing and takeoff.  相似文献   

16.
The unsteady low Reynolds number aerodynamics phenomena around flapping wings are addressed in several investigations. Elsewhere, airfoils at higher Mach numbers and Reynolds numbers have been treated quite comprehensively in the literature. It is duly noted that the influence of heat transfer phenomena on the aerodynamic performance of flapping wings configurations is not well studied. The objective of the present study is to investigate the effect of heat transfer upon the aerodynamic performance of a pitching and plunging NACA0012 airfoil in the low Reynolds number flow regime with particular emphasis upon the airfoil's lift and drag coefficients. The compressible Navier–Stokes equations are solved using a finite volume method. To consider the variation of fluid properties with temperature, the values of dynamic viscosity and thermal diffusivity are evaluated with Sutherland's formula and the Eucken model, respectively. Instantaneous and mean lift and drag coefficients are calculated for several temperature differences between the airfoil surface and freestream within the range 0–100 K. Simulations are performed for a prescribed airfoil motion schedule and flow parameters. It is learnt that the aerodynamic performance in terms of the lift CL and drag CD behavior is strongly dependent upon the heat transfer rate from the airfoil to the flow field. In the plunging case, the mean value of CD tends to increase, whereas the amplitude of CL tends to decrease with increasing temperature difference. In the pitching case, on the other hand, the mean value and the amplitude of both CD and CL decrease. A spectral analysis of CD and CL in the pitching case shows that the amplitudes of both CD and CL decrease with increasing surface temperature, whereas the harmonic frequencies are not affected.  相似文献   

17.
Trapping of vortices in a cavity has been explored in recent years as a drag reduction measure for thick airfoils. If, however, trapping fails, then oscillation of the cavity flow may couple with elastic vibration modes of the airfoil. To examine this scenario, the effect of small amplitude vertical motion on the oscillation of the shear layer above the cavity is studied by acoustic forcing simulating a vertical translation of a modified NACA0018 profile. At low Reynolds numbers based on the chord (O(104)), natural instability modes of this shear layer are observed for Strouhal numbers based on the cavity width of order unity. Acoustic forcing sufficiently close to the natural instability frequency induces a strong non-linear response due to lock-in of the shear layer. At higher Reynolds numbers (above 105) for Strouhal number 0.6 or lower, no natural instabilities of the shear layer and only a linear response to forcing were observed. The dynamical pressure difference across the airfoil is then dominated by added mass effects, as was confirmed by numerical simulations.  相似文献   

18.
In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code Open FOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion.Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions.  相似文献   

19.
The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C m,peak, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C l,max, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C m,peak, due to the large pressure increase on the lower surface of the flap, was also observed.  相似文献   

20.
The paper presents a hybrid Cartesian grid and gridless approach to solve unsteady moving boundary flow problems. Unlike the Chimera clouds of points approach, the hybrid approach uses a Cartesian grid to cover most of the computational domain and a gridless method to calculate a relatively small region adjacent to the body surface, making use of the flexibility of the gridless method in handling surface grid with complicated geometry and the computational efficiency of the Cartesian grid. Four cases were conducted to examine the applicability, accuracy and robustness of the hybrid approach. Steady flows over a single NACA0012 airfoil and dual NACA0012 airfoils at different Mach numbers and angles of attack were simulated. Moreover, by implementing a dynamic hole cutting, node identification and information communication between the Cartesian grid and the gridless regions, unsteady flows over a pitching NACA0012 airfoil (small displacement) and two‐dimensional airfoil/store separation (large displacement) were performed. The computational results were found to agree well with earlier experimental data as well as computational results. Shock waves were accurately captured. The computational results show that the hybrid approach is of potential to solve the moving boundary flow problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号