首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A negative‐type photosensitive polyimide (PSPI) based on semialicyclic poly(amic acid) (PAA), poly(trans‐1,4‐cyclohexylenediphenylene amic acid), and {[(4,5‐dimethoxy‐2‐nitrobenzyl)oxy]carbonyl} 2,6‐dimethylpiperidine (DNCDP) as a photobase generator has been developed as a next‐generation buffer coat material. The semialicyclic PAA was synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and trans‐1,4‐cyclohexyldiamine in the presence of acetic acid, and the PAA polymerization solution was directly used for PSPI formulation. This PSPI, consisting of PAA (80 wt %) and DNCDP (20 wt %), showed high sensitivity of 70 mJ/cm2 and high contrast of 10.3, when it was exposed to a 365‐nm line (i‐line), postexposure baked at 190 °C for 5 min, and developed with 2.38 wt % tetramethylammonium hydroxide aqueous solution containing 20 wt % isopropanol at 25 °C. A clear negative image of 6‐μm line and space pattern was printed on a film, which was exposed to 500 mJ/cm2 of i‐line by a contact printing mode and fully converted to poly(trans‐1,4‐cyclohexylenebiphenylene imide) pattern upon heating at 250 °C for 1 h. The PSPI film had a low coefficient of thermal expansion of 16 ppm/K compared to typical PIs, such as prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐oxydianiline. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1317–1323, 2010  相似文献   

2.
A positive‐working chemically amplified photosensitive polyimide (PSPI) developable with basic aqueous solutions was obtained from poly(amic acid ethoxymethylester) (PAAE) as a polyimide precursor and diphenyliodonium 5‐hydroxynaphthalene‐1‐sulfonate (DINS) as a photoacid generator. The norbornene‐end‐capped PAAE based on 4,4′‐oxydiphthalic anhydride and 4,4′‐oxydianiline exhibited high transparency at 365 nm. The protection ratio of the ethoxymethyl groups was optimized to maximize the difference between the dissolution rates of the exposed and unexposed areas. The acid generated from DINS in the UV‐exposed region effectively deprotected the ethoxymethyl groups of PAAE by a chemical amplification mechanism. A 10‐μm‐thick film of the PSPI precursor system containing 16 wt % DINS exhibited a sensitivity (Do) of 1100 mJ cm?2 when developed with a 2.38 wt % aqueous tetramethyl ammonium hydroxide solution at room temperature. A fine, positive, 5‐μm line‐and‐space pattern was fabricated in a 15‐μm‐thick film with 1500 mJ cm?2 of UV exposure. This resolution is excellent in comparison with those previously reported for chemically amplified PSPIs, and such a film can thus be used as a buffer coating in semiconductor packaging. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5520–5528, 2005  相似文献   

3.
A negative‐type photosensitive poly(phenylene ether) (PSPPE) based on poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE), a novel crosslinker 4,4′‐methylene‐bis [2,6‐bis(methoxymethyl)phenol] (MBMP) having good compatibility with PPE, and diphenylidonium 9,10‐dimethoxy anthracene‐2‐sulfonate (DIAS) as a photoacid generator (PAG) has been developed. This resist consisting of PPE (73 wt %), MBMP (20 wt %) and DIAS (7 wt %) showed a high sensitivity (D0.5) of 58 mJ/cm2 and a contrast (γ0.5) of 9.5 when it was exposed to i‐line (365 nm wavelength light), postexposure baked at 145 °C for 10 min, and developed with toluene at 25 °C. A fine negative image featuring 6 μm line‐and‐space pattern was obtained on the film exposed to 300 mJ/cm2 of i‐line by a contact‐printed mode. The resulting polymer film cured at 300 °C for 1 h under nitrogen had a low dielectric constant (ε = 2.46) comparable to that of PPE and a higher Tg than that of PPE. In addition, the cured PSPPE film was pretty low water absorption (<0.05%) as same as PPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4949–4958, 2008  相似文献   

4.
A negative working and chemically amplified photosensitive polymer has been developed, which is based on poly(2,6‐dihydroxy‐1,5‐naphthalene) (PDHN), the crosslinker 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol, and the photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile. PDHN, with a number‐average molecular weight of 25,000, was prepared by the oxidative coupling polymerization of 2,6‐dihydroxynaphthalene with di‐μ‐hydroxo‐bis[(N,N,N′,N′‐tetramethylethylenediamine)copper(II)] chloride in 2‐methoxyethanol at room temperature. The resulting PDHN showed a 5% weight loss temperature of 440 °C in nitrogen and a low dielectric constant of 2.82. The resist showed a sensitivity of 8.3 mJ cm?2 and a contrast of 11 when it was exposed to 436‐nm light, followed by postexposure baking at 100 °C for 5 min and development with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. A fine negative image featuring 10‐μm line‐and‐space patterns was obtained on a film 3 μm thick exposed to 10 mJ cm?2 of ultraviolet light at 436 nm in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2235–2240, 2004  相似文献   

5.
A positive‐type photosensitive polyimide (PSPI) based on poly(amic acid) (PAA), a crosslinker 1,1,1‐tris{4‐[2‐(vinyloxy)ethoxy]phenyl}ethane (TVPE), a photoacid generator (PAG) (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA), and a thermobase generator (TBG) t‐butyl 2,6‐dimethylpiperidine‐1‐carboxylate (BDPC) has been developed as a promising material in microelectronics. The PAA was prepared from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydianiline (ODA) in dimethyl sulfoxide (DMSO). The PSPI, consisting of PAA (69 wt %), TPVE (21 wt %), PTMA (3 wt %), and BDPC (7 wt %), showed high sensitivity of 21 mJ/cm2 and a high contrast of 6.8 when it was exposed to a 436‐nm line (g‐line), postbaked at 90 °C for 5 min, and developed with 1.69 wt % TMAHaq. A clear positive image of 8 μm line and space pattern was printed on film, which was exposed to 50 mJ/cm2 of g‐line by a contact printing mode and fully converted to the corresponding polyimide (PI) pattern on heating at 200 °C, confirmed by FTIR spectroscopy. Thus, this system will be a good candidate for next generation PSPIs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3362–3369, 2009  相似文献   

6.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

7.
Two methylphenylsiloxane monomers with crosslinkable benzocyclobutene functionalities at the terminal positions, 1,1,5,5‐dimethyldiphenyl‐1,1,5,5‐di[2′‐(4′‐benzocyclobutenyl)vinyl]‐3,3‐diphenyltrisiloxane (BCB‐1) and 1,1,3,3‐dimethyl‐diphenyl‐1,1,3,3‐di[2′‐(4′‐benzocyclobutenyl)vinyl]disiloxane (BCB‐2) were prepared and characterized. By heating the solution of BCB‐1 and BCB‐2 in mesitylene, two partially polymerized resins of BCB‐1B and BCB‐2B with high molecular weight were also achieved. The monomers and their oligomers fully cured at temperatures above 250 °C. Cured BCB‐1 and BCB‐2 exhibited high Tg (257 and 383 °C) and good thermal stability (T5% > 472 °C both in N2 and in air). They also demonstrated low dielectric constants (2.69 and 2.66), low dissipation factors (2.36 and 2.23), and low water absorptions (0.20% and 0.17%). Moreover, a negative photosensitive formulation derived from BCB‐1B in combination with 2,6‐bis(4‐azidobenzylidene)‐4‐methylcyclohexanone (BAC‐M) as a photosensitive agent has been developed. The photosensitive composition, BCB‐1B containing 5 wt % BAC‐M, showed a sensitivity of 550 mJ/cm2 and a contrast of 1.96 when it was exposed to a 365 nm light (i‐line) and developed with cyclohexanone at 25 °C. A fine negative image of 10 μm line‐and‐space pattern was also printed in a film which was exposed to 700 mJ/cm2 of i‐line by contact‐printing mode. The negative image can be maintained without any pattern deformation in the curing process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6246–6258, 2009  相似文献   

8.
A positive‐type photosensitive polybenzoxazole (PSPBO), based on a poly(o‐hydroxy amide) (PHA), the dissolution inhibitor (DI) 9,9‐bis(4‐tert‐butoxycarbonyloxyphenyl)fluorene (t‐Boc BHF), and the photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophene‐2‐ylidene)‐(2‐methylphenyl)acetonitrile (PTMA), was developed. Several new tert‐butoxycarbonylated compounds as DIs for PSPBOs were prepared from phenolic compounds having a cardolike structure with di‐tert‐butyl dicarbonate in the presence of 4‐dimethylaminopyridine. Among them, t‐Boc BHF and 5,5′,6,6′‐tetra(tert‐butoxycarbonyl)‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobiindane acted as excellent DIs, giving a large dissolution contrast between the exposed and unexposed areas in a 2.38 wt % tetramethylammonium hydroxide solution (TMAHaq)/5 wt % iso‐propanol (i‐PrOH). The dissolution behavior of this PSPBO system was studied in relation to the PTMA and t‐Boc BHF loadings and postexposure baking temperature. A PSPBO consisting of PHA (77 wt %), t‐Boc BHF (20 wt %), and PTMA (3 wt %) exhibited a sensitivity of 34 mJ/cm2 and a contrast of 5.8 when exposed to 365‐nm light (i‐line) and developed with an aqueous alkaline developer, 2.38 wt % TMAHaq/5 wt % i‐PrOH. A clear, positive image with 6‐μm features and a 10‐μm‐thick pattern with high sensitivity and contrast was produced by contact printing and converted into polybenzoxazole patterns upon heating at 350 °C for 1 h. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 661–668, 2007  相似文献   

9.
A series of photosensitive hyperbranched polyimides (HB‐PIs) were prepared through facile end‐group modifications of the fully imidized polymer. A triamine, 1,3,5‐tris(4‐aminophenoxy)benzene, and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, were condensed with a dropwise addition method in a molar ratio of 1/2 to afford an anhydride‐terminated poly(amic acid) precursor, which was then end‐capped by 4‐aminophenol and chemically imidized to yield a phenol‐terminated HB‐PI. The modifications of the terminal phenol groups of the polyimide by acyl chloride compounds (acryloyl chloride, methylacryloyl chloride, and cinnamoyl chloride) gave the target polymers. The photosensitive HB‐PIs showed good thermal properties and excellent solubility even in low‐boiling‐point solvents at room temperature, such as acetone, 1,1,2‐trichloroethane, tetrahydrofuran, and chloroform. Photosensitive property studies revealed good photolithographic properties with a resolution greater than 3 μm and a sensitivity of 650–680 mJ/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1735–1744, 2004  相似文献   

10.
A positive working photosensitive polymer based on poly(2,6‐dihydroxy‐1,5‐naphthylene) (PDHN) with 1‐(1,1‐bis{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}ethyl)‐4‐(1‐{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}methylethyl) benzene (S‐DNQ) as a photosensitive compound has been developed. PDHN (number‐average molecular weight: 13,000; polydispersity index: 1.9) was prepared by oxidative coupling polymerization of the 2,6‐dihydroxynaphthalene‐benzylamine complex using iron(III) chloride hexahydrate in the solid state. A 10 wt % loss temperature of PDHN was 450 °C in air, and the film of 1 μm thickness showed excellent transparency above 400 nm. The resist system consisting of PDHN and S‐DNQ gave a clear positive pattern when it was exposed to 436 nm of light, followed by development with a 0.50 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. The sensitivity (D) and contrast (γ) were 300 mJ/cm2 and 2.1, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 393–398, 2002  相似文献   

11.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

12.
A novel positive‐working, photosensitive polyimide, poly[1,4‐phenyleneoxy‐1,4‐phenylene‐2,2′‐di(2‐nitrobenzyloxy)benzophenone‐3,3′,4,4′‐tetracarboxdiimide] (OPI‐Nb), developable with an aqueous base was prepared by the o‐nitrobenzylation of a polyimide, poly(1,4‐phenyleneoxy‐1,4‐phenylene‐2,2′‐dihydroxybenzophenone‐3,3′,4,4′‐tetracarboxdiimide) (OPI), derived from 2,2′‐dihydroxy‐3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (DHBA) and 4,4′‐oxydianiline, and it micropatterning properties were investigated. The o‐nitrobenzylation of OPI to OPI‐Nb was conducted with o‐nitrobenzyl bromide in N‐methyl‐2‐pyrrolidinone containing Et3N. The DHBA monomer was synthesized by exhaustive KMnO4 oxidation of bis(2‐dimethoxy‐3,4‐dimethylphenyl)methane obtained by etherification of bis(2‐hydroxy‐3,4‐dimethylphenyl)methane with iodomethane, followed by deprotection of the methoxy groups and cyclodehydration of the obtained 2,2′‐dihydroxy‐3,3′4,4′‐benzophenonetetracarboxylic acid. The intermediate bis(2‐hydroxy‐3,4‐dimethylphenyl)methane was prepared by the condensation of 2,3‐dimethylphenol with paraformaldehyde. The degree of o‐nitrobenzylation was determined to be over 94 mol % from 1H NMR absorption of benzylic CH2 protons. The aromatic OPI was perfectly soluble in a dilute aqueous NaOH solution and tetramethylammonium hydroxide (TMAH), whereas OPI‐Nb was not even swellable in them. In the micropatterning process, OPI‐Nb showed a line‐width resolution of 0.4‐μm and a sensitivity of 5.4 J/cm2 when its thin films were irradiated with 365‐nm light and developed with a 2.38% aqueous TMAH solution at room temperature for 90 s. The thickness loss of OPI‐Nb films measured after postbaking at 350 °C was in the 8–9% range. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 776–788, 2007  相似文献   

13.
Hyperbranched polyimides (HBPI)s with high glass‐transition temperatures and excellent thermal stability were synthesized through the reaction of commercially available carboxylic acid dianhydrides with tris[4‐(4‐aminophenoxy)phenyl]ethane (TAPE). In particular, hyperbranched polyimide HBPI(TAPE‐DSDA), prepared through the reaction of TAPE with 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), showed higher thermal stability and good solubility. Furthermore, alkaline‐developable, photosensitive HBPI(TAPE‐DSDA)‐MA‐CA was prepared through the reaction of HBPI(TAPE‐DSDA) with glycidyl methacrylate with tetrabutylammonium bromide as a catalyst in N‐methyl‐2‐pyrrolidinone (NMP) followed by the addition reaction of cis‐1,2,3,6‐tetrahydrophthalic anhydride with triphenylphosphine as a catalyst in NMP. The glass‐transition temperatures of HBPI(TAPE‐DSDA)‐MA‐CA were greater than 300 °C. A resist composed of 74 wt % HBPI(TAPE‐DSDA)‐MA‐CA, 22.2 wt % trimethylpropane triacrylate, and 3.8 wt % Irgacure 907 as a photoinitiator achieved a resolution of a 55‐μm line pattern and a 275‐μm space pattern by UV irradiation (1000 mJ/cm2). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3697–3707, 2004  相似文献   

14.
A chemically amplified photosensitive and thermosetting polymer based on poly[2,6‐di(3‐methyl‐2‐butenyl)phenol (15 mol %)‐co‐2,6‐dimethylphenol (85 mol %)] ( 3c ) and a photoacid generator [(5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile] was developed. Poly[2,6‐bis(3‐methyl‐2‐butenyl)phenol]‐co‐2,6‐dimethylphenol)] ( 3 ) with high molecular weights (number‐average molecular weight ~ 24,000) was prepared by the oxidative coupling copolymerization of 2,6‐di(3‐methyl‐2‐butenyl)phenol with 2,6‐dimethylphenol in the presence of copper(I) chloride and pyridine as the catalyst under a stream of oxygen. The structures of 3 were characterized with IR, 1H NMR, and 13C NMR spectroscopy. 3 was crosslinked by a thermal treatment at 300 °C for 1 h under N2. The 5% weight loss temperatures and glass‐transition temperatures of the cured copolymers reached around 420 °C in nitrogen and 300 °C, respectively. The average refractive index of the cured copolymer ( 3c ) film was 1.5452, from which the dielectric constant at 1 MHz was estimated to be 2.6. The resist showed a sensitivity of 35 mJ cm?2 and a contrast of 1.6 when it was exposed to 436‐nm light, postexposure‐baked at 145 °C for 5 min, and developed with toluene at 25 °C. A fine negative image featuring 8‐μm line‐and‐space patterns was obtained on a film exposed to 100 mJ cm?2 with 436‐nm light in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 149–156, 2005  相似文献   

15.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

16.
A new positive working photosensitive poly(benzoxazole) (PBO) precursor based on poly(o‐hydroxyazomethine) ( 3 ) and 1‐{1,1‐bis[4‐(2‐diazo‐1‐(2H)naphthalenone‐5‐sulfonyloxy)phenyl]ethyl}‐4‐{1‐[4‐(2‐diazo‐1(2H)naphthalenone‐5‐sulfonyloxy)phenyl]methylethyl}benzene (S‐DNQ) as a photosensitive compound was developed. 3 was prepared by the condensation of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane with isophthalaldehyde in 1‐methyl‐2‐pyrrolidinone/toluene under azeotropic conditions. The photosensitive PBO precursor containing 30 wt % S‐DNQ showed a sensitivity of 120 mJ cm?2 and a contrast of 2.2 when it was exposed to 436‐nm light and developed with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 10‐μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm?2 ultraviolet light at 436 nm by the contact mode. The positive image was successfully converted into the PBO pattern by a thermal treatment. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3399–3405, 2002  相似文献   

17.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

18.
A novel fluorinated aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,5‐ditrifluoromethylphenyl)‐2,2,2‐trifluoroethane (9FMA), was synthesized by the coupling reaction of 3′,5′‐ditrifluoromethyl‐2,2,2‐trifluoroacetophenone with 2,6‐dimethylaniline under the catalysis of 2,6‐dimethylaniline hydrochloride. A series of fluorinated aromatic polyimides were synthesized from 9FMA and various aromatic dianhydrides, including pyromellitic dianhydride, 3,3′4,4′‐biphenyl tetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature, one‐stage imidization process. The inherent viscosities of the polyimides ranged from 0.37 to 0.74 dL/g. All the polyimides were quickly soluble in many low‐boiling‐point organic solvents such as tetrahydrofuran, chloroform, and acetone as well as some polar organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, and N,N′‐dimethylformamide. Freestanding fluorinated polyimide films could be prepared and exhibited good thermal stability with glass‐transition temperatures of 298–334 °C and outstanding mechanical properties with tensile strengths of 69–102 MPa and elongations at break of 3.3–9.9%. Moreover, the polyimide films possessed low dielectric constants of 2.70–3.09 and low moisture absorption (<0.58%). The films also exhibited good optical transparency with a cutoff wavelength of 303–351 nm. One polyimide (9FMA/BTDA) also exhibited an intrinsic negative photosensitivity, and a fine pattern could be obtained with a resolution of 5 μm after exposure at the i‐line (365‐nm) wavelength. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2665–2674, 2006  相似文献   

19.
A novel monomer, 2,2‐bis‐(4′‐fluorobenzoylphenoxy)‐4,4,6,6‐bis[spiro‐(2′,2″‐dioxy‐1′, 1′‐biphenylyl)] cyclotriphosphazene, was synthesized and polymerized with 4,4′‐difluorobenzophenone as a comonomer and 4,4′‐isopropylidenediphenol or 4,4′‐(hexafluoroisopropylidene) diphenol in N,N‐dimethylacetamide at 162 °C for 4 h to give two series of aromatic cyclolinear phosphazene polyetherketones containing bis‐spiro‐substituted cyclotriphosphazene groups. The structure of the monomer was confirmed by 1H, 13C, and 31P NMR. The effect of the incorporation of the bis‐spiro‐substituted cyclotriphosphazene group on the thermal properties of these polymers was investigated by DSC and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2993–2997, 2001  相似文献   

20.
A negative type photosensitive polyimide with alicyclic moiety (NPI) was synthesized from 5‐(2,5‐dioxotetrahydrofuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic anhydride and 4,4‐diaminobenzophenone by one‐step polymerization in m‐cresol. Properties of the polyimides were characterized and a photo‐crosslinking mechanism was investigated using DEPT 13C‐NMR and FT‐IR spectroscopy. The negative polyimide showed good photosensitivity on exposure to UV light from a mercury xenon lamp. The polyimide showed remarkable solubility difference after photo‐ irradiation with an exposure dose of 500 mJ/cm2. The resulting negative pattern of the photo‐cured NPI exhibited 10 μm resolution. Glass transition temperature of the photo‐crosslinked polyimide was about 307°C, which increased by 10°C compared to that of the polyimide before UV exposure. Transmittance of NPI after photo‐irradiation was about 87% at 500 nm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号