首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Electromagnetic interference (EMI) shielding has become a phenomenon of great concern and there is growing demand towards the synthesis of materials with better EMI shielding effectiveness (EMI SE). This work highlights the preparation of Polyaniline-Yttrium Oxide (PANI-Y2O3) composites for EMI shielding applications in the frequency range from 12.4 to 18 GHz (Ku-band). The structure and morphology of the composites were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). EMI SE, microwave absorption and reflection, dielectric properties of the composites are discussed in detail. All the computations were based on microwave scattering parameters measured by transmission line waveguide technique. The observed results show absorption dominant EMI shielding in these composites with EMI SE of ?19 to ?20 dB, which mainly depends on the dielectric loss of the composites. Through the results of our observations, we propose these composites to be potential materials for microwave absorption and EMI shielding applications.  相似文献   

2.
Intrinsically conducting polymers (ICP) and conductive fillers incorporated conductive polymer-based composites (CPC) greatly facilitate the research in electromagnetic interference (EMI) shielding because they not only provide excellent EMI shielding but also have advantages of electromagnetic wave absorption rather than reflection. In this review, the latest developments in ICP and CPC based EMI shielding materials are highlighted. In particular, existing methods for adjusting the morphological structure, electric and magnetic properties of EMI shielding materials are discussed along with the future opportunities and challenges in developing ICP and CPC for EMI shielding applications.  相似文献   

3.
There is widespread use of telecommunication and microwave technology in modern society, and raised the electromagnetic interference (EMI) issue to alarming situation due to apprehensive demand and growth of 5G technology undesirably disturbing the human health. The two dimensional (2D) materials including graphene and MXenes are already been used for variety of electronic devices due to their exceptional electrical, mechanical, optical, chemical, and thermal properties. MXene is composed of metal carbides, in which mainly metals are the building blocks for dielectrics, semiconductors, or semimetals. However, the strong interfaces with electromagnetic waves (EM) are variable from terahertz (THz) to gigahertz (GHz) frequency levels and are widely used in EMI and Microwave absorption (MA) for mobile networks and communication technologies. The use of different organic materials with metal, organic, inorganic fillers, polymers nanocomposite and MXene as a novel material has been studied to address the recent advancement and challenges in the microwave absorption mechanism of 2D materials and their nanocomposites. In this concern, various techniques and materials has been reported for the improvement of shielding effectiveness (SE), and theoretical aspects of EMI shielding performance, as well stability of 2D materials particularly MXene, graphene and its nanocomposites. Consequently, various materials including polymers, conducting polymers, and metal–organic frameworks (MOF) have also been discussed by introducing various strategies for improved MA and control of EMI shieling. Here in this comprehensive review, we summarized the recent developments on material synthesis and fabrication of MXene based nanocomposites for EMI shielding and MA. This research work is a comprehensive review majorly focuses on the fundamentals of EMI/MA.  The recent developments and challenges of the MXene and graphene based various structures with different polymeric composites are described in a broader perspective.  相似文献   

4.
《先进技术聚合物》2018,29(5):1377-1384
In this work, thermoplastic polyurethane‐filled montmorillonite‐polypyrrole (TPU/Mt‐PPy) was prepared through melt mixing process for using in electromagnetic shielding applications. The effect of conducting filler content and type, sample thickness, and X‐band frequency range on the electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation mechanism was investigated. A comparative study of electrical and microwave absorption properties of TPU/Mt‐PPy nanocomposites and TPU/PPy blends was also reported. The total EMI SE average and electrical conductivity of all Mt‐PPy.Cl or Mt‐PPy.DBSA nanocomposites are higher than those found for TPU/PPy.Cl and TPU/PPy.DBSA blends. This behavior was attributed to the higher aspect ratio and better dispersion of the nanostructured Mt‐PPy when compared with neat PPy. Moreover, the presence of Mt‐PPy into TPU matrix increases absorption loss (SEA) mechanism, contributing to increase EMI SE. The total EMI SE values of nanocomposites containing 30 wt% of Mt‐PPy.DBSA with 2 and 5 mm thickness were approximately 16.6 and approximately 36.5 dB, respectively, corresponding to the total EMI of 98% (75% by absorption) and 99.9% (88% by absorption). These results highlight that the nanocomposites studied are promising materials for electromagnetic shielding applications.  相似文献   

5.
The effects of variation in average diameter and surface area of nanocomposite fibers on electromagnetic interference (EMI) shielding of multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) fibers were investigated in this paper. The EMI shielding effectiveness of electrospun nanocomposite fibers were measured in the X-band frequency range 8.2–12.4 GHz. The electrical conductivity and EMI shielding behaviors of the nanocomposite fibers were reported as function of average diameter and surface area of MWCNTs/PVP nanocomposite fibers. The electrical conductivity measurements demonstrate using thinner nanocomposite fibers results in a lower limit of electrical resistivity, better electrical conductivity performance. The EMI shielding efficiency of thinner nanocomposite fibers increased up to 42 dB. The EMI shielding data for MWCNTs/PVP nanocomposite fibers with various average diameter and surface area showed that absorption was the major shielding mechanism and reflection was the secondary shielding mechanism. It can be related to higher specific surface area of thinner electrospun MWCNTs/PVP nanocomposite fibers that means more surface area for radiative scatter and absorption leading to higher EMI shielding performance.  相似文献   

6.
《中国化学快报》2020,31(4):1026-1029
The demand for flexible and freestanding electromagnetic interference(EMI) shielding materials are more and more urgent to combat with serious electromagnetic(EM) radiation pollution.Twodimensional Ti_3C_2T_x is considered as promising EMI shielding material to graphenes because of the low cost and high electrical conductivity.However,the shielding performance still needs to be optimized to decrease the reflection effectiveness(SE_R) and increase absorption effectiveness(SEA).Herein,we prepared Ti_3C_2T_x-bonded carbon black films with a porous structure.The SE_R decreased from 20 dB to12 dB and the SEA increased from 31 dB to 47 dB.The best EMI shielding effectiveness can be as high as60 dB with SE_A of 15 dB and SE_R of45 dB.Their calculated specific shielding effectiveness can be as high as8718 dB cm~2/g.These results indicate that the porous structure can enhance the absorption of the EMI shielding films,resulting from the enhanced scattering and reflectio n.Conseque ntly,this work provides a promising MXene-based EMI shielding film with lightweight and flexibility.  相似文献   

7.
A flexible and multi-layered graphene nanosheets (GNSs)-Fe3O4/poly (vinylidene fluoride) hybrid composite film with high-efficient electromagnetic interference (EMI) shielding was fabricated via a facile layer-by-layer coating. The well-designed multi-layered and hybrid electromagnetic fillers endow the prepared film with good surface impedance matching and prominent internal multiple absorption, which forms “absorb-reflect-reabsorb” electromagnetic transmission pattern and results in highly efficient electromagnetic shielding effectiveness (EMI SE). The resultant composite film exhibits an exceptional EMI SE of 52.0 dB at a thickness of 0.3 mm. What is more important is that the prepared film exhibits excellent flexibility and EMI stability, and the retention rate of efficient EMI SE is high as 91.9% after 1000 bending-release cycles. This study provides a feasible strategy for designing high-efficient EMI shielding film with excellent flexibility and ultra-thin thickness that suitable for next-generation intelligent protection devices.  相似文献   

8.
Herein, we report the synthesis of a graphene/polymer composite via a facile and straightforward approach for electromagnetic interference (EMI) shielding applications. Polystyrene (PS) beads were added in graphene oxide (GO)/water solution followed by the addition of hydroiodic acid (HI) for in situ reduction of GO. The composite solution (rGO/PS) was filtered, hot compressed and tested for EMI shielding and dielectric measurements. A 2-mm thick segregated rGO/PS sample with 10 wt% filler loading delivered a high EMI shielding effectiveness (SE) of 29.7 dB and an AC electrical conductivity of 21.8 S m?1, which is well above the commercial requirement for EMI shielding applications. For comparison with the segregated rGO/PS composite, a control polymer composite sample utilizing a thermally reduced graphene oxide was synthesized by following a conventional coagulation approach. The as-synthesized conventional rGO/PS yield an EMI SE of 14.2 dB and electrical conductivity of 12.5 S m?1. The high EMI shielding of segregated rGO/PS is attributed to the better filler-to-filler contact among graphene layers surrounded by PS beads and also to the better reduction and preservation of graphene structure during reduction process that makes the low temperature chemically reduced segregated rGO/PS approach a viable route compared to high temperature thermally reduced conventional rGO/PS approach.  相似文献   

9.
Electrically conducting Au‐multiwalled carbon nanotube/polyaniline (Au‐MWCNT/PANi) nanocomposites were synthesized by two different ways: (1) by direct mixing of MWCNT/PANi and Au nanoparticles (Au‐MWCNT/PANi‐1) and (2) by in situ polymerization of aniline in the presence of both MWCNTs and Au nanoparticles (Au‐MWCNT/PANi‐2). The higher electrical conductivity of Au‐MWCNT/PANi‐2 compared with the other samples (PANi, MWCNT/PANi, Au‐MWCNT/PANi‐1) is supported by the red shifts of the UV‐vis bands (polaron/bipolaron), the high value of the –NH+= stretch peak (Fourier transform infrared spectroscopy studies), the high % crystallinity (X‐ray diffraction analysis) and more uniform dispersion of the Au NPs in the material. The performance of the samples in electromagnetic interference (EMI) shielding and microwave absorption was studied in the X‐band (8–12 GHz). For all the samples, absorption was the dominant factor contributing toward the EMI shielding. Au‐MWCNT/PANi‐2 showed the best performance with a total shielding effectiveness of ?16 dB [averaged over the X‐band (GHz)] and a minimum reflection loss of ?56.5 dB. The higher dielectric properties resulting from the heterogeneities because of the presence of nanofillers and the high electrical conductivity lead to the increased EMI shielding and microwave absorption. The results show the significance of both Au nanoparticles and method of synthesis on the EMI shielding performance of MWCNT/PANi composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The rapid development of communication technology and electronic industry has brought unprecedented serious electromagnetic interference (EMI) and electromagnetic wave (EMW) pollution. Although EMI shields and EMW absorbers based on metal or magnetic materials were used to solve these problems, they have long been criticized for their high price, high density and easy corrosion. In order to achieve low density and efficient dissipation of electromagnetic energy, aerogels stand out among manifold materials. However, constructing aerogels with good EMI shielding or EMW absorption performance and acceptable mechanical properties is not an easy task. Burgeoning biopolymers, such as cellulose, lignin, chitin/chitosan and alginate, breathe new life into aerogels for high-efficiency EMW shielding and absorbing. Here, we reviewed the contributions of biopolymers in the fields of aerogels for EMW shielding and absorbing. At the same time, some challenges and outlook were also pointed out, aiming to promote the advance of aerogel-based EMI shields and EMW absorbers as well as the rational utilization of biopolymers.  相似文献   

11.
Processing, electrical, and electromagnetic interference (EMI) shielding behaviors of carbon nanotube (CNT)/acrylonitrile–butadiene–styrene (ABS) nanocomposites were studied as function of CNT concentration. The nanocomposites were prepared by melt mixing followed by compression molding. The selective and good level of dispersion of CNT in the styrene–acrylonitrile section of the ABS polymer was found to create conductive networks in the ABS matrix at a nanofiller loading of 0.75 wt %. At this nanofiller loading, the nanocomposite electrical conductivity was 10?5 S/m. This conductivity makes the nanocomposite suitable for electrostatic discharge protection applications. The EMI shielding effectiveness of the nanocomposites increased with the increase in nanofiller concentration. In the 100–1500 MHz frequency range, 1.1 mm thick plates made of ABS nanocomposite filled with 5 wt % CNT exhibit an EMI shielding effectiveness of 24 dB. At this shielding level, the nanocomposite is suitable for a broad range of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   

13.
Carbon black-based conductive rubber composites have important impacts on electromagnetic interference(EMI) shielding applications. However, an excessive amount of carbon black in the recipes of these conductive rubbers has caused their weak elasticity. Herein, hollow carbon black(HCB) particles were used to tune the elasticity of conductive rubber composites. Unique hollow morphology produced a better compression recovery of HCB than other solid carbon black, such as acetylene black. When the coupling agent was bonded to HCB, their conductive silicone rubber composites were featured by high stretching resilience, a fast compression recovery and excellent conductivity to satisfy the electromagnetic interference shielding requirements. Importantly, the rubber composites with coupling HCB had extremely low variations of mechanical property, conductivity and EMI shielding effectiveness after thermal accelerated aging tests. It is therefore revealed that the elasticity of HCB and its interfacial chemical coupling with rubber chains both play crucial roles in adjusting the elasticity of conductive rubber to sever long-term EMI protection.  相似文献   

14.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

15.
Two-dimensional (2D) materials possess special physical and chemical properties. They have been proved to have potential application advantage in the microwave absorption (MA) and electromagnetic interference (EMI) shielding. Particularly, they exhibit positive shielding and absorbing response to EMI. Here, the research progress of preparation, electromagnetic performance and microwave shielding/absorbing mechanisms of 2D composite materials are introduced. Effective preparation routes including introducing heteroatoms, constructing unique structures and 2D composite materials are described. Furthermore, the application prospects and challenges for the development of novel EMI materials are expatiated.  相似文献   

16.
As a critical action plan formulated for peaking carbon dioxide emissions, polymeric electromagnetic interference (EMI) shielding materials based on CO2 foaming technology have recently been attracting widespread attention in both research and industry, attributable to their efficient use of CO2, high specific strength, corrosion resistance and low-cost characteristics. In the past decade, the emergence of novel design concepts and preparation techniques for CO2 foaming technology has led to the development of new high-performance EMI shielding materials in this field. This review summarizes the research progress made to date on the fabrication of EMI shielding composite foams by supercritical carbon dioxide (scCO2) foaming. We also explore the structure-activity relationships between the component/distribution and EMI shielding properties. Additionally, the application prospects and development challenges of new EMI shielding composite foams are described.  相似文献   

17.
The present article deals with current trends in spinel based modified polymer composite materials for applications in the field of electromagnetic shielding. The interaction between the various spinel based materials and polymers is an emerging field of studies among various researchers. The thermal stability, electrical conductivity, the bonding between the metal ferrites and the polymer plays an important role in the interaction of electromagnetic radiation. These properties also effect the mechanism of the EM waves for the shielding applications. Considering these all properties, polyaniline appears to be an suitable polymer for electromagnetic shielding applications. Polyaniline composites not only reinforced the properties of spinel materials but also enhanced the dielectric properties of the composite material. When carbon based materials such as graphene, graphene oxide and CNT was added along with spinel material in polyaniline based composite, they accelerate the electrical properties and enhances the shielding applications. In this paper the various synthesis methods, fabrication methods of polyaniline, and the properties of polyaniline based composites have been discussed. In addition, the various salient features and futuristic challenges of polyaniline based composite materials for EMI shielding applications were attempted to make a well equipped material for radar absorption.  相似文献   

18.
Yu  Zhicai  Zhao  Yuhang  Liu  Jinru  Wang  Yushu  Qin  Yi  Zhu  Zhenyu  Wu  Cong  Peng  Jiacheng  He  Hualing 《Cellulose (London, England)》2022,29(12):6963-6981

Exploitation of cotton fabric as electromagnetic interference (EMI) shielding substrates have attracted a growing interest due to their desirable low carbon footprint, economic feasibility, and sustainability. Herein, a facile strategy was proposed for preparing a cellulose-based multifunctional PNIPAAm/PPy hydrogel/cotton (PPHC) EMI shielding composites with simultaneous high-efficient electro-photo-thermal conversion and comfort regulation functions. The PPHC was fabricated via in situ polymerization conductive PPy hydrogel on cotton substrate followed by deposition of PNIPAAm. Benefiting from the unique interconnected three-dimensional networked conductive structure of PPy hydrogel, the obtained PPHC composites exhibited high conductivity (15 mS/cm), and EMI shielding effectiveness (EMI SE?~?40 dB) in the frequency of 8.2–12.3 GHz. Moreover, the PNIPAAm coating endowed the composite fabrics with adjustable wettability performance in response to external temperature, leading to excellent comfort regulation performance. This work provided feasible avenue toward low cost and sustainability cotton-based EMI shielding composites with efficient EMI shielding and comfort regulation performance.

Graphical abstract
  相似文献   

19.
张扬  温变英 《高分子科学》2015,33(6):899-907
A novel asymmetric Ni/PVC film has been developed by solution casting method. The structure, electrical conductivity, electromagnetic interference(EMI) shielding, and impact resistance were investigated. The results showed that the Ni particles were asymmetrically distributed along the thickness direction in the film. The top surface resistivity increased with film thickness, while the bottom surface exhibited the different trend. EMI shielding effectiveness(SE) depended on formation of closed packed conductive Ni network, which was influenced by both Ni content and film thickness. A linear relationship was observed between EMI SE and film thickness. The films with lower Ni content showed the faster increasing rate of EMI SE with film thickness. Some of the films show appreciably high EMI SE( 40 d B), indicating the promising application in EMI shielding field. Moreover, the films exhibit different impact performance under different impacting directions. All the experimental facts demonstrate that the asymmetric structure endows the film achieving high-performance EMI shielding function.  相似文献   

20.
This paper presents a solvent-based, mild method to prepare superhydrophobic, carbon nanofiber/PTFE-filled polymer composite coatings with high electrical conductivity and reports the first data on the effectiveness of such coatings as electromagnetic interference (EMI) shielding materials. The coatings are fabricated by spraying dispersions of carbon nanofibers and sub-micron PTFE particles in a polymer blend solution of poly(vinyledene fluoride) and poly(methyl methacrylate) on cellulosic substrates. Upon drying, coatings display static water contact angles as high as 158° (superhydrophobic) and droplet roll-off angles of 10° indicating self-cleaning ability along with high electrical conductivities (up to 309 S/m). 100 μm-thick coatings are characterized in terms of their EMI shielding effectiveness in the X-band (8.2-12.4 GHz). Results show up to 25 dB of shielding effectiveness, which changed little with frequency at a fixed composition, thus indicating the potential of these coatings for EMI shielding applications and other technologies requiring both extreme liquid repellency and high electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号