首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Simultaneous measurements of the response of a circular cylinder experiencing vortex-induced vibrations (VIVs) in the streamwise direction and the resulting wake field were performed for a range of reduced velocities using time-resolved Particle-Image Velocimetry in the Reynolds number range 450–3700. The dominant vortex shedding mode was identified using phase-averaged vorticity fields. The cylinder response amplitude was characterised by two response branches, separated by a low amplitude region at resonance, as has been previously reported in the literature. During the first response branch the wake exhibited not only the symmetric S-I mode, but also the alternate A-II mode at slightly higher reduced velocities. For both modes, the vortices were observed to be shed at the cylinder response frequency, but rearranged downstream into a more stable structure in which the velocity fluctuations were no longer synchronised to the cylinder motion. A special case of the A-II mode, referred to as the SA mode, was found to dominate in the second response branch and the low amplitude region, while the far wake and the cylinder motion were synchronised (lock-in). A change in the timing of the vortex shedding with respect to the cylinder motion was observed between the low amplitude region and the second response branch. This is likely to correspond to a change in the fluid forcing and levels of excitation, and may explain the variation in the cylinder amplitude observed in this region. Lock-in and the second response branch were found to coincide with a contraction of the wake and an increase in strength of the shed vortices. This work reveals the inherent differences between the extensively studied case of transverse-only VIV and the streamwise-only case, which is crucial if the wealth of information available on transverse VIV is to be extended to the more practical two degree-of-freedom case.  相似文献   

2.
On the study of vortex-induced vibration of a cylinder with helical strakes   总被引:1,自引:0,他引:1  
While the effect of helical strakes on suppression of Vortex-Induced Vibrations (VIV) has been studied extensively, the mechanism of VIV mitigation using helical strakes is much less well documented in the literature. In the present study, a rigid circular cylinder of diameter d=80 mm attached with three-strand helical strakes of dimensions of 10d in pitch and 0.12d in height was tested in a wind tunnel. It was found that the helical strakes can reduce VIV by about 98%. Unlike the bare cylinder, which experiences lock-in over the reduced velocity in the range of 5-8.5, the straked cylinder does not show any lock-in region. In exploring the mechanism of VIV reduction by helical strakes, measurements in stationary bare and straked cylinder wakes using both a single X-probe at four different Reynolds numbers, i.e. Re=10 240, 20 430, 30 610 and 40 800, and two X-probes with variable separations in the spanwise direction at Re=20 430 were conducted. It was found that vortices shed from the straked cylinder are weakened significantly. The dominate frequency varies by about 30% over the range of x/d=10-40 in the streamwise direction while that differs by about 37.2% of the averaged peak frequency over a length of 3.125d in the spanwise direction. The latter is supported by the phase difference between the velocity signals measured at two locations separated in the spanwise direction. The correlation length of the vortex structures in the bare cylinder wake is much larger than that obtained in the straked cylinder wake. As a result, the straked cylinder wake agrees more closely with isotropy than the bare cylinder wake. Flow visualization on the plane perpendicular to the cylinder axis at Reynolds number of about 300 reveals small-scale vortices in the shear layers of the straked cylinder wake. However, these vortices do not roll up and interact with each other to form the well-organized Karman-type vortices. Flow visualization on the plane parallel to the cylinder axis shows vortex dislocation and swirling flow, which should be responsible for the variations of the peak frequency in the streamwise as well as spanwise directions.  相似文献   

3.
The mechanism underlying the lock-in of frequencies in flow-induced vibrations is analysed using elementary linear dynamics. Considering the case of lock-in in vortex-induced vibrations (VIV), we use a standard wake oscillator model, as in previous studies, but in its simplest form where all nonlinear terms and all dissipative terms are neglected. The stability of the resulting linear system is analysed, and a range of coupled-mode flutter is found. In this range, the frequency of the most unstable mode is found to deviate from the Strouhal law when the frequency of the wake oscillator approaches that of the free cylinder motion. Simultaneously the growth rate resulting from coupled-mode flutter increases, which would lead to higher vibration amplitudes. The extent of the range of lock-in is then compared with experimental data, showing a good agreement. It is therefore stated that the lock-in phenomenon, such as in VIV, is a particular case of linear coupled-mode flutter.  相似文献   

4.
Symmetric perturbations imposed on cylinder wakes may result in a modification of the vortex shedding mode from its natural antisymmetric, or alternating, to a symmetric one where twin vortices are simultaneously shed from both sides of the cylinder. In this paper, the symmetric mode in the wake of a circular cylinder is induced by periodic perturbations imposed on the in-flow velocity. The wake field is examined by PIV and LDV for Reynolds numbers about 1200 and for a range of perturbation frequencies between three and four times the natural shedding frequency of the unperturbed wake. In this range, a strong competition between symmetric and antisymmetric vortex shedding occurs for the perturbation amplitudes employed. The results show that symmetric formation of twin vortices occurs close to the cylinder synchronized with the oscillatory component of the flow. The symmetric mode rapidly breaks down and gives rise to an antisymmetric arrangement of vortex structures further downstream. The downstream wake may or may not be phase-locked to the imposed oscillation. The number of cycles for which the symmetric vortices persist in the near wake is a probabilistic function of the perturbation frequency and amplitude. Finally, it is shown that symmetric shedding is associated with positive energy transfer from the fluid to the cylinder due to the fluctuating drag.  相似文献   

5.
In the present paper, the commercial CFD code “Fluent” was employed to perform 2-D simulations of an entire process that included the flow around a fixed circular cylinder, the oscillating cylinder (vortex-induced vibration, VIV) and the oscillating cylinder subjected to shape control by a traveling wave wall (TWW) method. The study mainly focused on using the TWW control method to suppress the VIV of an elastically supported circular cylinder with two degrees of freedom at a low Reynolds number of 200. The cross flow (CF) and the inline flow (IL) displacements, the centroid motion trajectories and the lift and drag forces of the cylinder that changed with the frequency ratios were analyzed in detail. The results indicate that a series of small-scale vortices will be formed in the troughs of the traveling wave located on the rear part of the circular cylinder; these vortices can effectively control the flow separation from the cylinder surface, eliminate the oscillating wake and suppress the VIV of the cylinder. A TWW starting at the initial time or at some time halfway through the time interval can significantly suppress the CF and IL vibrations of the cylinder and can remarkably decrease the fluctuations of the lift coefficients and the average values of the drag coefficients; however, it will simultaneously dramatically increase the fluctuations of the drag coefficients.  相似文献   

6.
Vortex-induced vibration (VIV) of an elastically mounted rigid circular cylinder in steady current is investigated by solving the three-dimensional Navier–Stokes equations. The cylinder is allowed to vibrate only in the cross-flow direction. The aim of this study is to investigate the variation of the vortex shedding flow in the axial direction of the cylinder and to study the transition of the flow from two-dimensional (2D) to three-dimensional (3D) for VIV of a cylinder. Simulations are carried out for a constant mass ratio of 2, the Reynolds numbers ranging from 150 to 1000 and the reduced velocities ranging from 2 to 12. The three-dimensionality of the flow is found to be the strongest in the upper branch of the VIV response and weakest in the initial branch. The 2S and 2P vortex shedding modes are found to coexist along the cylinder span in the upper branch, leading to strong variations of the lift coefficient in the axial direction of the cylinder. The difference between the flow transition from 2D to 3D in the VIV lock-in regime and that in the wake of a stationary cylinder is identified. The transition mode B found in the wake of a stationary cylinder is also found in the wake of a vibrating cylinder. The critical Reynolds number for flow transition from 2D to 3D of a cylinder undergoing cross-flow VIV at a reduced velocity of 6 is found to be greater than that for a stationary cylinder. For a constant reduced velocity of 6, the wake flow changes from 2D to 3D as the Reynolds number is increased from 250 to 300. Some 2D numerical simulations are performed and it is found that the 2D Navier–Stokes (NS) equations are not able to predict the VIV in the turbulent flow regime, while the 2D Reynolds-averaged Navier–Stokes (RANS) equations improve the results.  相似文献   

7.
The division of flow regimes in a square cylinder wake at various angles of attack (α) is studied. This study provides evidence of the existence of modes A and B instabilities in the wake of an inclined square cylinder. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the Strouhal number versus Reynolds number curves. The spectra and time traces of wake streamwise velocity were observed to display three distinct patterns in different flow regimes. Streamwise vortices with different wavelengths at various Reynolds numbers were visualized. A PIV technique was employed to quantitatively measure the parameters of wake vortices. The wavelengths of the streamwise vortices in the modes A and B regimes were measured by using the auto-correlation method. From the present investigation, the square cylinder wake at various angles of attack undergoes a similar transition path to that of a circular cylinder, although various quantitative parameters measured which include the critical Reynolds numbers, spanwise wavelength of secondary vortices, and the circulation and vorticity of wake vortices all show an α dependence.  相似文献   

8.
An adaptive fuzzy sliding mode control (AFSMC) scheme is applied to actively suppress the two-dimensional vortex-induced vibrations (VIV) of an elastically mounted circular cylinder, free to move in in-line and cross-flow directions. Laminar flow regime at Re=90, low non-dimensional mass with equal natural frequencies in both directions, and zero structural damping coefficients, are considered. The natural oscillator frequency is matched with the vortex shedding frequency of a stationary cylinder at Re=100. The strongly coupled unsteady fluid/cylinder interactions are captured by implementing the moving mesh technology through integration of an in-house developed User Define Function (UDF) into the main code of the commercial CFD solver Fluent. The AFSMC approach comprises of a fuzzy system designed to mimic an ideal sliding-mode controller, and a robust controller intended to compensate for the difference between the fuzzy controller and the ideal one. The fuzzy system parameters as well as the uncertainty bound of the robust controller are adaptively tuned online. A collaborative simulation scheme is realized by coupling the control model implemented in Matlab/Simulink to the plant model constructed in Fluent, aiming at determination of the transverse control force required for complete suppression of the cylinder streamwise and cross-flow oscillations. The simulation results demonstrate the high performance and effectiveness of the adopted control algorithm in attenuating the 2D-VIV of the elastic cylinder over a certain flow velocity range. Also, the enhanced transient performance of the AFSM control strategy in comparison with a conventional PID control law is demonstrated. Furthermore, the effect of control action on the time evolution of vortex shedding from the cylinder is discussed. In particular, it is observed that the coalesced vortices in the far wake region of the uncontrolled cylinder, featuring the C(2S)-type vortex shedding characteristic mode, are ultimately forced to switch to the classical von Kármán vortex street of 2S-type mode, displaying wake vortices of moderately weaker strengths very similar to those of the stationary cylinder. Lastly, robustness of AFSMC is verified against relatively large structural uncertainties as well as with respect to a moderate deviation in the uniform inlet flow velocity.  相似文献   

9.
The interaction between the wake of a transverse circular cylinder and the underlying flat-plate boundary layer with a moderate gap ratio G/D=1.0 is investigated using both hydrogen-bubble-based and PIV-based visualization techniques. The spanwise rollers in the cylinder wake are found to be capable of inducing secondary vortices in the near-wall region. The mutual induction from the counter-clockwise rollers, which are closer to the wall, plays a primary role, so that these secondary vortices present linear lift-up motion at first. Their subsequent evolution dominantly determines the characteristics of the wake/boundary-layer interaction. Two different vortex interaction scenarios are observed: the secondary vortices can be either entrained into the rollers or pushed down towards the wall. This leads to a rapid three-dimensional destabilization process, through which streamwise vortices are generated. And it is suggested that these streamwise vortices are the dominant structures to promote the following boundary layer transition.  相似文献   

10.
A long flexible cylinder exposed to ocean currents is known to undergo vortex-induced vibration (VIV). In a spatially sheared flow the response of a riser to VIV can vary from single mode lock-in to multimodal. A new experimental facility was designed and built to investigate the above-mentioned areas. The facility consisted of a long flexible cylinder in either a uniform or a simplified vertically sheared flow. The instrumentation consisted of direct local fluid force measurement at two locations on the cylinder as well as accelerometers spaced along the cylinder axis. The simplified shear flow was a 2-slab flow, with each slab having uniform velocity. Test conditions included forcing the cylinder simultaneously at resonance in both regions to investigate modal competition issues and multimodal response patterns. Resonant VIV excitation of two different modes simultaneously, was conducted which revealed single mode lock-in of the higher frequency through an unexpected mechanism. The higher frequency mode's damping region underwent in-line excitation at four times the predicted shedding frequency that provided a power-in effect to support the dominant mode's cross-flow response.  相似文献   

11.
An experimental investigation was conducted on relations between a ‘sound’ * and vortices generated by a plane Jet impinging on a circular cylinder. The ‘sound’ was a pseudo sound or near-field pressure fluctuations because its measurement was made at positions not sufficiently far from the Jet and the cylinder. The vortices consisted of vortices formed in the impinging jet and vortices shed from the cylinder. A thin splitter plate was attached to the downstream side of the cylinder to modify the shed vortices. The nature of the shed vortices was shown to have a significant influence on the intensity and frequency of the ‘sound’. The intensity of the ‘sound’ was found to be related to the streamwise extent of distributed vorticity within the vortices; that is, the more compact the vortices, the stronger was the ‘sound’.  相似文献   

12.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

13.
In the present study, an experimental investigation was performed to characterize the vortex induced vibration (VIV) of a flexible cable in an oncoming shear flow. The VIV tests were conducted in a wind tunnel with a flexible cable model. It was found that, under different oncoming velocity profiles, the cable model behaved in single-mode and multi-mode VIVs. The displacement amplitudes of the single mode VIVs were found to be larger than those of multi-mode VIVs, and the cross-flow (CF) response was larger than that of in-line (IL) direction for either the single mode or multi-mode VIVs. For a single mode vibration, the largest CF response occurs in the 1st mode VIV, and the motion trajectory of the 1st mode VIV was found to be an inclined figure of eight shape, while other single mode VIVs behaved in ellipse or straight line trajectories. For multi-mode VIVs, no stable vibration trajectories were found to exist since the vibration frequency bands covered two or more vibration modes. The vortex-shedding frequencies in the wake behind the inclined cable were also characterized in the present study. The shedding frequencies of the wake vortices were found to coincide well with the vibration modes: for a single mode VIV, they were close to the dominant vibration mode; for a multi-mode VIV, they could also cover the appearing vibration modes.  相似文献   

14.
Flow around an oscillating cylinder in a subcritical region are numerically studied with a lattice Boltzmann method(LBM). The effects of the Reynolds number,oscillation amplitude and frequency on the vortex wake modes and hydrodynamics forces on the cylinder surface are systematically investigated. Special attention is paid to the phenomenon of resonance induced by the cylinder oscillation. The results demonstrate that vortex shedding can be excited extensively under subcritical conditions, and the response region of vibration frequency broadens with increasing Reynolds number and oscillation amplitude. Two distinct types of vortex shedding regimes are observed. The first type of vortex shedding regime(VSR I) is excited at low frequencies close to the intrinsic frequency of flow, and the second type of vortex shedding regime(VSR II)occurs at high frequencies with the Reynolds number close to the critical value. In the VSR I, a pair of alternately rotating vortices are shed in the wake per oscillation cycle,and lock-in/synchronization occurs, while in the VSR II, two alternately rotating vortices are shed for several oscillation cycles, and the vortex shedding frequency is close to that of a stationary cylinder under the critical condition. The excitation mechanisms of the two types of vortex shedding modes are analyzed separately.  相似文献   

15.
The shedding process in the near wake of a surface-mounted, square cross-section cylinder of height-to-width aspect ratio 4 at a Reynolds number of 12,000 based on free-stream velocity and the obstacle width was investigated. The boundary layer thickness was 0.18 obstacle heights based on 99% free-stream velocity. The study is performed using planar high frame-rate particle image velocimetry synchronized with pressure measurements and hot-wire anemometry. Spatial cross-correlation, instantaneous phase relationships, and phase-averaged velocity data are reported. Two dominant vortex-shedding regimes are observed. During intervals of high-amplitude pressure fluctuations on the obstacle side faces, alternate formation and shedding of vortices is observed (regime A) similar to the von Kármán process. Regime B is characterized by two co-existing vortices in the obstacle lee throughout the shedding cycle and is observed within low-amplitude pressure fluctuation intervals. Despite the coexisting vortices in the base region, opposite sign vorticity is still shed out-of-phase downstream of this vortex pair giving rise to a staggered arrangement of counter-rotating vortices downstream. While the probability of occurrence of Regime B increases toward the free end, the amplitude modulation remains coherent along the obstacle height. Conditionally phase-averaged reconstructions of the flow field are consistent with the spatial distribution of the phase relationships and their probability density function. Earlier observations are reconciled showing that the symmetric shedding of vortices is a rare occurrence.  相似文献   

16.
Two-dimensional Unsteady Reynolds-Average Navier–Stokes equations with the Spalart–Allmaras turbulence model are used to simulate the flow induced motions of multiple circular cylinders with passive turbulence control (PTC) in steady uniform flow. Four configurations with 1, 2, 3, and 4 cylinders in tandem are simulated and studied at a series of Reynolds numbers in the range of 30 000<Re<120 000. Simulation results are verified by experimental data measured in the Marine Renewable Energy Laboratory. Good agreement was observed between the values of vorticity, amplitude ratio, and frequency ratio predicted by numerical simulations and experimental measurements. The amplitude and frequency response show the initial and upper branches in vortex induced vibration (VIV), transition from VIV to galloping, and galloping branch for all PTC-cylinders. The maximum amplitude of 2.9 diameters for the first cylinder is achieved at Re=104 356 in the numerical results. Compared with the first cylinder, the VIV initial branch starts at higher Re for the downstream cylinders due to the presence of the upstream cylinder(s). 2P and 2P+2S vortex patterns are observed at Re=62 049 and Re=90 254 for the single PTC-cylinder. Furthermore, the shed vortices of the downstream cylinders are strongly disrupted and modified by the vortices shed from the upstream one in the cases of multiple PTC-cylinders.  相似文献   

17.
The transition phenomena in the wake of a square cylinder were investigated. The existence of mode A and mode B instabilities in the wake of a square cylinder was demonstrated. The critical Reynolds numbers for the inception of these instability modes were identified through the determination of discontinuities in the St–Re curves, and were found to have mean values of 160 and 204 for the onset of mode A and B instabilities, respectively. The spectra and time traces of the wake streamwise velocity component were found to display three distinct patterns in laminar, mode A and mode B flow regimes. Streamwise vortices with different wavelength at various Reynolds numbers were observed through different measures. The symmetries and evolution of the secondary vortices were observed using laser-induced-fluorescent dye. It was found that, just like the case of a circular cylinder, the secondary vortices from the top and bottom rows were out-of-phase with each other in the mode A regime, but in-phase with each other in the mode B regime. From the flow visualization, it was qualitatively proven that there is stronger interaction between braid regions in the mode B regime. At the same time, analysis of PIV measurements quantitatively demonstrated the presence of the stronger cross flow in mode B regime when compared to the mode A regime. It suggests that the in-phase symmetry of the mode B instability is the result of strong interaction between the top and bottom vortex rows. It was also observed that although the vorticity of the secondary vortices in the mode A regime was smaller, its circulation was more than twice that of mode B instability. Compared to primary vortices, the circulations of both mode A and mode B vortices were much smaller, which indicates that the secondary vortices most likely originate from the primary vortices. The wavelengths of the streamwise vortices in the mode A and B regimes were measured using the auto-correlation method, and were found to be 5.1 (±0.1)D, 1.3 (±0.1)D, and 1.1 (±0.1)D at Re=183 (mode A), 228 and 377 (both mode B), respectively. From the present investigation, mode A instability was likely to be due to the joint-effects of the deformation of primary vortex cores and the stretching of vortex sheets in the braid region. On the other hand, mode B instability was thought to originate from the “imprinting” process.  相似文献   

18.
A direct numerical simulation of two-dimensional (2D) flow past an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method had been undertaken. The cylinder motion was modelled by a two degree-of-freedom mass–spring–damper system. The computing code was verified against a benchmark problem in which flow past a stationary circular cylinder is simulated. Then, analyses of vortex-induced vibration (VIV) responses, drag and lift forces and the phase and vortex structures were carried out. Results show that the cylinder's non-dimensional cross-flow response amplitude reaches its summit of 0.572 in the ‘lock-in’ regime. The ‘2S’, instead of the ‘2P’, vortex shedding mode is dominated in the ‘lower’ branch for this 2D low-Re VIV. A secondary oscillation is observed in the lift force when ‘lock-in’ occurs. It is shown that this secondary component changes the phase, offset the energy input by the primary component and thus reduces the cylinder responses. Effects of the Skop–Griffin parameter on cylinder responses were also investigated.  相似文献   

19.
Confined aspect-ratio of 6 wavy cylinders with a mean blockage-ratio of 0.5 were studied using time-resolved particle-image velocimetry at a sub-critical Reynolds number of 2700. Wavelengths and wave amplitudes of 2–4 and 0.1–0.3 mean diameters respectively were investigated. Results show that vortices are generally shed from the wavy cylinder and channel walls regularly, reminiscent of the unsteady symmetric flow configuration in confined non-wavy cylinders. Furthermore, vortex formation lengths for confined wavy cylinders are generally shorter than their unconfined counterparts, though their variations with respect to geometrical changes remain consistent with unconfined flow conditions. Gross cross-stream flow behaviour does not differ significantly between confined and unconfined wavy cylinders, indicating that finite-length effects are independent of the present confinement. Confined wavy cylinder wake regions are more sensitive towards geometrical changes and a combination of small wavelength and large wave amplitude leads to significant suppression of coherent cylinder and wall vortex-shedding. This is supported by phase-averaged flow reconstructions derived from Proper Orthogonal Decomposition analysis. Lastly, larger wave amplitudes lead to redistributions of dominant flow energy further downstream and to higher mode numbers, which suggests a causal link to the formation of stronger and more coherent streamwise vortices.  相似文献   

20.
Three-dimensional vortical structures have been measured in a circular-cylinder wake using particle imaging velocimetry (PIV) for the Reynolds number range of 2×103 to 1×104. The PIV was modified, compared with the conventional one, in terms of its light sheet arrangement to capture reliably streamwise vortices. While in agreement with previous reports, the presently measured spanwise structures complement the data in the literature in the streamwise evolution of the near-wake spanwise vortex in size, strength, streamwise and lateral convection velocities, shedding new light upon vigorous interactions between oppositely signed spanwise structures. The longitudinal vortices display mushroom patterns in the (x, z)-plane in the immediate proximity to the cylinder. Their most likely inclination in the (x, y)-plane is inferred from the measurements in different (x, z)-planes. The longitudinal vortices in the (y, z)-plane show alternate change in sign, though not discernible at x/d > 15. They decay in the maximum vorticity and circulation rapidly from x/d = 5 to 10 and slowly for x/d > 10, and are further compared with the spanwise vortices in size, strength and rate of decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号